Skip to main content
Log in

Review In Situ high-temperature optical microscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature optical microscopy is an essential in situ characterisation and monitoring technique with wide applications in different areas of materials science. The devices used include commercial available instruments, known as heating microscopes, and custom-made devices, usually called “high-temperature processing microscopes” or “thermo-optical instruments”. The different areas of applications of high-temperature optical microscopy are discussed on the basis of practical examples drawn from the literature. Besides the classical use of the technique to study the melting and softening behaviour of glass, slags, ashes and other silicate and ceramic materials, this review covers alternative applications, in particular the use of heating microscopes as “optical dilatometers” to investigate the sintering kinetics of powder compacts. In this regard, the advantages of the technique over conventional dilatometry are emphasised. A variety of custom-made devices is described, developed to investigate particular problems, such as delamination and curling of laminate composites during densification, cosintering of multilayer metal-ceramic and ceramic-ceramic systems, and wetting behaviour of liquid phases on rigid substrates. As a particular example of such a custom-made equipment, a novel, multi-purpose high-temperature processing microscope is described, and its application potential, which is well beyond that of commercial devices, is outlined. This instrument is unique in that it combines both vertical and horizontal sample observation capability, as well as the possibility to investigate samples of relatively large sizes (65 mm3), i.e. about 10 times larger than those suitable for commercial heating microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Chamot and C. W. Mason, in “Handbook of Chemical Microscopy,” Vol. I, 2nd ed. (John Wiley & Sons, New York, 1938) pp. 198–204.

    Google Scholar 

  2. R. Clevenger, Ind. Eng. Chem. 16 (1924) 854.

    Google Scholar 

  3. P. K. Gallagher, in “Thermal Characterisation of Polymeric Materials,” Vol. 1, 2nd ed., edited by E. A. Turi (Academic Press, San Diego, 1997) pp. 149–155.

    Google Scholar 

  4. P. A. Tick, K. E. Lu, S. Mitachi, T. Kanamori and S. Takahashi, J. of Non-Cryst. Solids 140 (1992) 275–280.

    Google Scholar 

  5. R. J. Miller and H. F. Gleeson, Meas. Sci. Technol. 5 (1994) 904–911.

    Google Scholar 

  6. E. M. Daver and W. J. Ullrich, in “Experimental Techniques in Powder Metallurgy,” edited by J. S. Hirschhorn and K. H. Roll (Plenum Press, New York, 1970) pp. 189–200.

    Google Scholar 

  7. F. A. Costa Oliveira, R. J. Fordham, S. Canetoli and J. H. W. De Wit, Key Eng. Mat. 113 (1996) 91–98.

    Google Scholar 

  8. Y. Maeda and M. Koizumi, Rev. Sci. Instrum. 67 (1996) 2030–2031.

    Google Scholar 

  9. Linkam Scientific Instruments: Heating and Freezing Stages, Product Information, 1998.

  10. D. M. Price, European Microscopy and Analysis 53(5) (1998) 21–23.

    Google Scholar 

  11. B. E. Dom, H. E. Evans and D. M. Torres, in “Adhesion Aspects of Polymeric Coatings,” edited by K. L. Mittal (Plenum Press, New York, 1983) pp. 597–612.

    Google Scholar 

  12. “Materials Science and Technology, Vol. 2B: Characterisation of Materials,” edited by R. W. Cahn, P. Haasen and E. J. Cramer. (Wiley-VCH, 1993).

  13. “Handbook of Microscopy, Applications in Materials Science, Solid-State Physics and Chemistry,” edited by S. Amelinckx, D. van Dyck, J. van Landuyt and G. van Tendeloo (VCH, Weinheim, 1997).

  14. ASM Handbook, Vol. 17, Nondestructive Evaluation and Quality Control (ASM International, Ohio, 1989).

  15. Leica Mikroskopie und Systeme GmbH, LEITZ Heating Microscopes, Product Information N. 913661. Leica Mikroskopie und Systeme GmbH, Wetzlar (Germany).

  16. Misura 2.0: Automatic Heating Microscope with Integrated Image Analysis, Product Information. Expert System srl, Modena (Italy).

  17. W. Radmacher, Brensstoff-Chemie 30 (1949) 377–384.

    Google Scholar 

  18. K. H. Endell, Z. Krist. 56 (1921) 191.

    Google Scholar 

  19. E. Ebert, Organ f¨ur die Forstschritte des Eisenbahnwesens 85 (1930) 410.

    Google Scholar 

  20. W. Mann, Ber. Deutsch. Keram. Gesell. 29 (1952) 163–168.

    Google Scholar 

  21. S. Schor, Energie 8 (1956) 2–4.

    Google Scholar 

  22. A. Zwetsch, Ber. Deutsch. Keram. Gesell. 33 (1956) 349–357.

    Google Scholar 

  23. A. Metz, Radex-Rundschau 4 (1959) 612–616.

    Google Scholar 

  24. R. GÖrke and K.-J. Leers, Keramische Zeitschrift 48 (1996) 300–305.

    Google Scholar 

  25. A. Metz, Keram. Zeitschrift 6 (1962) 351–354.

    Google Scholar 

  26. B. Luthard, Fa. Leica,Wetzlar (Germany), personal communication (1998).

  27. A. Metz, Silikat-Journal 3 (1964) 273–278.

    Google Scholar 

  28. H. Scholze, Ber. Dtsch. Keram. Ges. 39 (1962) 63–68.

    Google Scholar 

  29. H. Jebsen-Marwedel, Glastech. Ber. 27 (1954) 172–173.

    Google Scholar 

  30. H. S. Kim, R. D. Rawlings and P. S. Rogers, J. Mater. Sci. 24 (1989) 1025–1037.

    Google Scholar 

  31. T.-F. Lee and Y.-C. Ko, Ceram. Bull. 61 (1982) 737–740.

    Google Scholar 

  32. I. Vicente Magarino, J. Ma. RincÓn, P. Bowles, R. D. Rawlings and P. S. Rogers, Glass Technol. 33 (1992) 49–52.

    Google Scholar 

  33. H. J. Padberg, cfi/Ber. DKG 70 (1993) 598–602.

    Google Scholar 

  34. D. S. Buist, Br. Ceram. Soc. Trans. 69 (1970) 15–20.

  35. R. Conradt, in “Proc.HVG/NCNGColloquium: Melting Processes in Glass Furnaces,” edited by H. A. Schaeffer and R. G. C. Beerkens (German Glass Society (DGG) 1998).

  36. E. Gugel Und F. Czedik-Eysenberg, Berg-und h¨uttenmännische Monatsh. 105 (1960) 201–210.

    Google Scholar 

  37. K. H. Clemens, Mitt. VDEfa 9 (1961) 97–108.

    Google Scholar 

  38. E. Hofmann, Stahl und Eisen 79 (1959) 846–854.

    Google Scholar 

  39. F. Reich and J. D. Panda, TIZ-Zbl. 85 (1961) 186–190.

    Google Scholar 

  40. Idem., Tonindustrie-Zeitung 85 (1961) 223–229.

    Google Scholar 

  41. F. Zapp and I. Domagala, Keramische Zeitschrift 6 (1954) 505–508.

    Google Scholar 

  42. K. Spangenberg, Silikatechnik 5 (1954) 330.

    Google Scholar 

  43. F. Freund, Ber. Dtsch. Keram. Ges. 37 (1960) 209–218.

    Google Scholar 

  44. R. M. German, “Sintering Theory and Practice” (John Wiley & Sons, New York, 1996).

    Google Scholar 

  45. O. S. Ozgen and G. M. Fryer, Trans. Br. Ceram. Soc. 80 (1981) 67–70.

    Google Scholar 

  46. X. Elias and A. Viedma, Keram. Zeitschrift 32 (1984) 420–425.

    Google Scholar 

  47. D. Harkort and D. Paetsch, Ber. Dtsch. Keram. Ges. 37 (1960) 402–409.

    Google Scholar 

  48. H. E. Exner, Powd. Metall. 4 (1980) 203–209.

    Google Scholar 

  49. K.-D. Kim, J. Mat. Res. 10 (1995) 1846–1849.

    Google Scholar 

  50. L. C. Dejonghe and M. N. Rahaman, Rev. Sci. Instrum. 55 (1984) 2007–2010.

    Google Scholar 

  51. M. N. Rahaman, L. C. Dejongue, G. W. Scherer and R. J. Brook, J. Amer. Ceram. Soc. 70 (1987) 766–780.

    Google Scholar 

  52. A. R. Boccaccini, Science of Sintering 23 (1991) 151–161.

    Google Scholar 

  53. U. Partsch, C. Kretzschmar, E. K. Polzer, P. Otschlik, J.-H. Meyer, in “Werkstoffwoche 96: Werkstoffe f¨ur die Informationstechnik,” edited by H. Thomann (DGM Informationsgesellschaft, Oberursel, 1997) pp. 139–144.

  54. Z. Panek, J. Mater. Sci. 29 (1994) 5383–53889.

    Google Scholar 

  55. W. S. Hackenberger, T. R. Shrout and R. F. Speyer, in “Sintering Technology,” edited by R. M. German, G. L. Messing and R. G. Cornwall (Marcel Dekker, New York, 1996) pp. 505–512.

    Google Scholar 

  56. M. Paganelli, Ind. Ceram. 16 (1996) 1–6.

    Google Scholar 

  57. M. Ferraris and E. Verne, J. Europ. Ceram. Soc. 16 (1996) 421–427.

    Google Scholar 

  58. E. VernÉ, M. Ferraris, A. Ventrella, L. Paracchini, A. Krajewski and A. Ravaglioli, J. Europ. Ceram. Soc. 18 (1998) 363–372.

    Google Scholar 

  59. A. P. N. Deoliveira, T. Manfredini, L. Barbieri, C. Leonelli, G. P. Pellacani, J. Amer. Ceram. Soc. 81 (1998) 777–780.

    Google Scholar 

  60. A. R. Boccaccini, J. Mater. Sci., 29 (1994) 4273–4278.

    Google Scholar 

  61. A. R. Boccaccini, P. A. Trusty and D. M. R. Taplin, Mater. Lett. 24 (1995) 199–205.

    Google Scholar 

  62. A. R. Boccaccini and R. Kramer, Glass Technology 36 (1995) 95–97.

    Google Scholar 

  63. A. R. Boccaccini, Microscopy and Analysis 57 Nr. 1 (1997) 19–20.

    Google Scholar 

  64. Idem., J. Mater. Sci. Lett. 12 (1993) 943–945.

    Google Scholar 

  65. A. R. Boccaccini, W. Stumpfe, D. M. R. Taplin and C. B. Ponton, Mat. Sci. Eng. A219 (1996) 26–31.

    Google Scholar 

  66. H. Schreiner and R. Tusche, Powder Metall. Int. 11 (1979) 52–56.

    Google Scholar 

  67. H. E. Exner and E. A. Giess, J. Mater. Res. 3 (1988) 122–125.

    Google Scholar 

  68. M. J. Hoffmann, A. Nagel, P. Greil and G. Petzow, J. Amer. Ceram. Soc. 72 (1989) 765–769.

    Google Scholar 

  69. A. R. Boccaccini, in Proceedings 4th ESG Conference, Fundamentals of Glass Science and Technology (The Glass Research Institute, Växjö, Sweden, 1997) pp. 356–363.

  70. A. Cyunczyk, Powd. Metall. Int. 11 (1979) 162–164.

    Google Scholar 

  71. Y. Wanibe, N. Fujitsuna, T. Itoh and H. Yokohama, Powd. Metall. 32 (1989) 191–194.

    Google Scholar 

  72. R. Raman, R. M. German, Met. Mat. Trans. 26A (1995) 653–660.

    Google Scholar 

  73. Y. Mizuno, A. Kawasaki and R. Watanabe, Powd. Metall. 38 (1995) 191–195.

    Google Scholar 

  74. A. P. Bromley, G. Wood and R. Fletcher, Ceram. Bull. 77 (9) (1998) 58–62.

    Google Scholar 

  75. M. N. Rahaman and L. C. Dejonghe, J. Amer. Ceram. Soc. 70 (1987) C-348–C-351.

    Google Scholar 

  76. G. W. Scherer, Ceram. Bull. 70 (1991) 1059–1063.

    Google Scholar 

  77. A. R. Boccaccini, Adv. Comp. Lett. 4 (1995) 143–149.

    Google Scholar 

  78. S. Winkler, P. Davies, J. Janoschek, J. Thermal Analysis 40 (1993) 999–1008.

    Google Scholar 

  79. A. Jagota, K. R. Kikeska and R. K. Bordia, J. Amer. Ceram. Soc. 73 (1990) 2266–2273.

    Google Scholar 

  80. A. R. Boccaccini and E. A. Olevsky, Met. Mat. Trans. 28A(11) (1997) 2397–2404.

    Google Scholar 

  81. A. R. Boccaccini, J. Mater. Res. 13(6) (1998) 1693–1697.

    Google Scholar 

  82. T. Takamori and K. Iriyama, Ceram. Bull. 46 (1967) 1169–1173.

    Google Scholar 

  83. M. N. Rahaman, L. C. Dejonghe, S. L. Shinde and P. H. Tewari, J. Amer. Ceram. Soc. 71 (1988) C-338–C-341.

    Google Scholar 

  84. R. E. Dutton and M. N. Rahaman, ibid. 75 (1992) 2146–2154.

    Google Scholar 

  85. M. Y. Nazmy, Powder Metall. Int. 8 (1976) 19.

    Google Scholar 

  86. M. Borbe, A. BÜrger, E. Hornbogen and H. NÖcker, Materialpr¨ufung 36 (1994) 418–421.

    Google Scholar 

  87. Z. Chen, S.-F. Chen, R. A. Overferth and M. F. Rose, J. Mater. Res. 13 (1998) 2202–2205.

    Google Scholar 

  88. M. A. Nettleton and E. Raask, J. Appl. Chem. 17 (1967) 18–21.

    Google Scholar 

  89. E. Raask and R. Jessop, Phys. Chem. Glasses 7 (1966) 200–201.

    Google Scholar 

  90. C. K. Schoff, in “Modern Approaches to Wettability. Theory and Applications,” edited by M. E. Schrader and G. L. Loeb (Plenum Press, New York, 1992) p. 375.

    Google Scholar 

  91. W. F. Gale, J. W. Fergus, W. M. Ingram and M. Koopman, J. Mater. Sci. 32 (1997) 4931–4940.

    Google Scholar 

  92. K. Lellig, Untersuchung der Benetzung und Haftung bei Verbundwerkstoffen aus Gläsern und thermoplastischen Polymeren, Dissertation, Aachen University of Technology, Aachen, Germany, 1996.

  93. E. Kuhn, B. Hamann and D. HÜlsenberg, Glas und temperaturbeständige, glaskristalline Erzeugnisse auf der Basis von recyceltem, verunreinigtem Flachglas. Final Report Nr. B403-96003. Technical University of Ilmenau, Ilmenau, Germany (1997).

  94. Carbolite GmbH, Laboröfen, Trocken-und Brötschränke. Product Information, Carbolite GmbH (1998) p. 19.

  95. S. Mäkipirtti, in “Powder Metallurgy,” edited by W. Leszynski (Interscience Publishers, New York, 1960) pp. 97–111.

    Google Scholar 

  96. M. Tikkanen, Planseeberichte f¨ur Pulvermetallurgie 11 (1963) 70–81.

    Google Scholar 

  97. G. A. Shoales and R. M. German, Met. Mat. Trans. 29A (1998) 1257–1263.

    Google Scholar 

  98. Y Mizuno, A. Kawasaki and R. Watanabe, Metall. Mat. Trans. 26B (1995) 75–79.

    Google Scholar 

  99. A. Siegmann, I. Raiter, M. Narkis and P. Eyerer, J. Mater. Sci. 21 (1986) 1180–1186.

    Google Scholar 

  100. C. T. Bellehumeur, M. K. Bisaria and J. Vlachopoulos, Polym. Eng. Sci. 36 (1996) 2198–2207.

    Google Scholar 

  101. L. Sarvaranta, J. App. Polym. Sci. 56 (1995) 1085–1091.

    Google Scholar 

  102. C. P. Ostertag, in “Science of Sintering,” edited by D. P. Uskokovic, H. Palmour III and R. M. Spriggs (Plenum Press, New York, 1989) pp. 453–459.

    Google Scholar 

  103. C. P. Ostertag, J. Amer. Ceram. Soc. 70 (1987) C-355–C-357.

    Google Scholar 

  104. P. Z. Cai, D. J. Green and G. L. Messing, ibid. 80 (1997) 1929–39.

    Google Scholar 

  105. T. Cheng and R. Raj, ibid. 71 (1988) 276–280.

    Google Scholar 

  106. Idem., ibid. 72 (1989) 1649–1655.

    Google Scholar 

  107. G.-Q. Lu, R. C. Sutterlin and T. K. Gupta, ibid. 76 (1993) 1907–14.

    Google Scholar 

  108. J. Bang and G.-Q. Lu, J. Mater. Res. 10 (1995) 1321–1326.

    Google Scholar 

  109. J.-H. Jean and C.-R. Chang and Z.-C. Chen, J. Amer. Ceram. Soc. 80 (1997) 2401–2406.

    Google Scholar 

  110. J.-H. Jean and C.-R. Chang, ibid. 80 (1997) 3084–92.

    Google Scholar 

  111. T. J. Garino and H. K. Bowen, ibid. 73 (1990) 251–257.

    Google Scholar 

  112. J. N. Calata, A. Matthys and G.-Q. Lu, J. Mater. Res. 13 (1998) 2334–2341.

    Google Scholar 

  113. F. Raether and G. MÜller, in “Fourth Euroceramics,” Vol. 2, edited by C. Galassi (Faenza Editrice, 1995) pp. 103–112.

  114. B. J. Carroll, in “Contact Angle,Wettability and Adhesion,” edited by K. L. Mittal (VSP, Utrecht, The Netherlands, 1993) pp. 235–246.

    Google Scholar 

  115. F. Boury and J.-E. Proust, ibid. (1993) pp. 585–595.

  116. V. K. Nagesh, A. P. Tomsia and J. A. Pask, J. Mater. Sci. 18 (1983) 2173–2180.

    Google Scholar 

  117. H. J. Oel, Ber. Dtsch. Keram. Ges. 38 (1961) 258–267.

    Google Scholar 

  118. H.-N. Ho, S.-T. Wu, Mat. Sci. Eng. A248 (1998) 120–124.

    Google Scholar 

  119. S. W. Ip, R. Sridhar, J. M. Toguri, T. F. Stephenson, A. E. M. Warner, ibid. A244 (1998) 31–38.

    Google Scholar 

  120. A. Feng, B. J. Mccoy, Z. A. Munir, D. Cagliostro, ibid. A242 (1998) 50–56.

    Google Scholar 

  121. E. Saiz and A. P. Tomsia, J. Amer. Ceram. Soc. 81 (1998) 2381–2393.

    Google Scholar 

  122. K. Landry, S. Kalogeropoulou, N. Eustathopoulos, Mat. Sci. Eng. A254 (1998) 99–111.

    Google Scholar 

  123. J. C. Bacri, R. Perzynski, D. Salin, F. Brochard-Wyart, J. M. Di Meglio, D. Quere, in “Hydrodynamics of Dispersed Media,” edited by J. P. Hulin, A. M. Cazabat, E. Guyon and F. Carmona (North Holland, Amsterdam, 1990) pp. 63–68.

    Google Scholar 

  124. W. D. Kingery, J. Amer. Ceram. Soc. 42 (1959) 6–10.

    Google Scholar 

  125. P. Nikolopoulos and G. Ondracek, Z. Werkstofftechnik 13 (1982) 60–69.

    Google Scholar 

  126. C. A. Deckert and D. A. Peters, in “Adhesion Aspects of Polymeric Coatings,” edited by K. L. Mittal (Plenum Press, New York, 1983) pp. 469–480.

    Google Scholar 

  127. R. Nitsche, Zur Benetzung und Haftung von Verbundwerkstoffphasen und Metall-Keramik-Systemen. Dissertation, Aachen Technical University, Aachen, Germany (1994).

    Google Scholar 

  128. Thermal Technology, Reaction Monitoring Display System. Product Information, Thermal Technology, Inc. Santa Rosa, USA.

  129. B. Hamann and W. Gruner,Vorrichtung zur Untersuchung thermischerVorgänge anWerkstoffproben. Patentanmeldung (Germany) DE 198 15 827.0. 9.4.98.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccini, A.R., Hamann, B. Review In Situ high-temperature optical microscopy. Journal of Materials Science 34, 5419–5436 (1999). https://doi.org/10.1023/A:1004706922530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004706922530

Keywords

Navigation