Skip to main content
Log in

Evolution of cell division in bacteria

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Molecular evolution in bacteria is examined with an emphasis on cell division. For a bacterial cell to assemble and then divide required an immense amount of integrated cell and molecular biology structures/functions to be present, such as a stable cellular structure, enzyme catalysis, minimal genome, septum formation at mid-cell and mechanisms to take up nutrients and produce and use energy, as well as store it. The first bacterial cell(s) capable of division must have had complex cell and molecular biology functions. At this stage of evolution, they would not have been primitive cells but would have reached a threshold in evolution where cell division occurred in a regulated manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach-Richter, L., Gupta, R., Stetter, K.O., Woese, C.R., 1987. Were the original eubacteria thermophiles? Systematic and Applied Microbiology 9, 34–39.

    PubMed  CAS  Google Scholar 

  • Bramhill, D., 1997. Bacterial cell division. Annual Review of Cell and Developmental Biology 13, 395–424.

    Article  PubMed  CAS  Google Scholar 

  • Bramhill, D., Thompson, C.M., 1994. CTP-dependent polymerization of E. coli FtsZ protein to form tubules. Proceedings of the National Academy of Sciences USA 91, 5813–5817.

    Article  CAS  Google Scholar 

  • Brunskill, E., De Jonge, B.L.M., Bayles, K.W., 1997. The Staphylococcus aureus scdA gene; a novel locus that affects cell division and morphogenesis. Microbiology 143, 2877–2882.

    PubMed  CAS  Google Scholar 

  • Cairns-Smith, A.G., 1985. Seven Clues to the Origin of Life: A Scientific Detective Story. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Caldwell, D.R., 1995. Microbial Physiology and Metabolism. Wm. C. Brown Publishers, Dubuque, IA, USA.

    Google Scholar 

  • Carballido-Lopez, R., Errington, J., 2003. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Developmental Cell 4, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P., 1996. Let there be life. New Scientist, July 6, 22–27.

  • Cooper, S., 1991. Bacterial Growth and Division. Academic Press, New York, USA.

    Google Scholar 

  • Cordell, S.C., Lowe, J., 2001. Crystal structure of the bacterial cell division regulator MinD. FEBS Letters 492, 16–165.

    Article  Google Scholar 

  • Cordell, S.C., Anderson, R.E., Lowe, J., 2001. Crystal structure of the bacterial cell division inhibitor Min C. The EMBO Journal 20, 2454–2461.

    Article  PubMed  CAS  Google Scholar 

  • Corre, J., Louarn, J.M., 2002. Evidence form terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in E. coli. Journal of Bacteriology 184, 3801–3807.

    Article  PubMed  CAS  Google Scholar 

  • de Duve, C., 1995. Vital Dust: Origin and Evolution of Life on Earth. Basic Books, New York, USA.

    Google Scholar 

  • Fox, S., 1980. Metabolic microspheres. Naturwissenschaften 67, 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Gesteland, R.F., Atkins, J.F., 1993. In: The RNA World. Cold Spring Harbor Laboratory Press, Plainview, New York, USA.

    Google Scholar 

  • Gold, T., 2001. The Deep Hot Biosphere. Copernicus Books, New York, USA.

    Google Scholar 

  • Graumann, P.L., Losick, R., 2001. Coupling of asymmetric division to polar placement of replication origin regions in Bacillus subtilis. Journal of Bacteriology 183, 4052–4060.

    Article  PubMed  CAS  Google Scholar 

  • Hamoen, L.W., Errington, J., 2003. Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B. Journal of Bacteriology 185, 693–697.

    Article  PubMed  CAS  Google Scholar 

  • Harry, E.J., 2001. Bacterial cell division: regulating Z-ring formation. Molecular Microbiology 40, 795–803.

    Article  PubMed  CAS  Google Scholar 

  • Hill, S., 1988. How is nitrogenase regulated by oxygen? FEMS Microbiology Reviews 54, 111–130.

    Article  CAS  Google Scholar 

  • Hu, Z., Lutkenhaus, J., 2001. Topical regulation of cell division in E. coli: spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Molecular Cell 7, 1337–1343.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, C., Shapiro, L., 1999. Bacterial cell division: a movebale feast. Proceedings of the National Academy Science USA 96, 5891–5893.

    Article  CAS  Google Scholar 

  • Joyce, G.F., Orgel, L.E., 1993. Prospects for understanding the origin of the RNA world. In: Gesteland, R.F., Atkins, J.F. (Eds.), The RNA World. Cold Spring Harbor Laboratory Press, Plainview, New York, USA, pp. 1–25.

    Google Scholar 

  • Koch, A.L., 1994. Development and diversification of the last universal ancestor. Journal of Theoretical Biology 168, 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A.L., 2000. The bacterium’s way for safe enlargement and division. Applied Environmental Microbiology 66, 3657–3663.

    Article  CAS  Google Scholar 

  • Koonin, E.V., 2000. How many genes can make a cell: the minimal-gene-set concept. Annual Review Genomics and Human Genetics 01, 99–116.

    Article  CAS  Google Scholar 

  • Kruse, K., 2002. A dynamic model for determining the middle of Escherichia coli. Biophysical Journal 82, 618–627.

    Article  PubMed  CAS  Google Scholar 

  • Lara, B., Ayala, A., 2002. Topological characterization of the essential E. coli cell division protein FtsW. FEMS Microbiology Letters 216, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Laughlin, R.B.D., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P., 2000. The middle way. Proceedings of the National Academy Science USA 97, 32–37.

    Article  CAS  Google Scholar 

  • Lazcano, A., Fox, G.E., Or, J.F., 1992. Life before DNA: the origin and evolution of early Archean cells. In: Mortlock, R.P. (Ed.), The Evolution of Metabolic Function. CRC Press, Boca Raton, FL, USA, pp. 237–295.

    Google Scholar 

  • Lemon, K.P., Grossman, A.D., 2001. The extrusion-capture model for chromosome partitioning in bacteria. Genes & Development 15, 2031–2041.

    Article  CAS  Google Scholar 

  • Liu, G.K., Begg, K., Geddes, A., Donachie, W.D., 2001. Transcription of essential cell division genes is linked to chromosome replication in E. coli. Molecular Microbiology 40, 909–916.

    Article  PubMed  CAS  Google Scholar 

  • Margolin, W., 2000. Themes and variations in prokaryotic cell division. FEMS Microbiology Reviews 24, 531–548.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H., De Boer, P.A.J., 2001. Pattern formation in E. coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proceedings of the National Academy Science USA 98, 14202–14207.

    Article  CAS  Google Scholar 

  • Morchio, R., Traverso, S., 1999. The hydrophobic superficial layer: the primordial cradle of life. Biology Forum 92, 105–117.

    Google Scholar 

  • Mushegian, A.R., Koonin, E.V., 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy Science USA 93, 10268–10273.

    Article  CAS  Google Scholar 

  • Parsons, I.M., Lee, R., Smith, J.V., 1998. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surface. Proceedings of the National Academy Science USA 95, 15173–15176.

    Article  CAS  Google Scholar 

  • Pichoff, S., Lutkenhaus, J., 2001. E. coli division inhibitor MinCD blocks septation by preventing Z-ring formation. Journal of Bacteriology 183, 6630–6635.

    Article  PubMed  CAS  Google Scholar 

  • Prub, M.M., 1998. Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Archives of Microbiology 170, 141–146.

    Article  Google Scholar 

  • Regamey, A., Harry, E.J., Wake, R.G., 2000. Mid-cell ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: co-ordinating chromosome replication with cell division. Molecular Microbiology 38, 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Russell, M.J., Hall, A.J., 1997. The emergence of life form iron monosulphiode bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society (London) 154, 377–402.

    Article  CAS  Google Scholar 

  • Sakai, N., Yao, M., Itou, H., Watanabe, N., Yumoto, F., Tanokura, M., Tanaka, I., 2001. The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshi OT3 in complex with MG-ADP. Structure 9, 817–826.

    Article  PubMed  CAS  Google Scholar 

  • Scheffers, D., Driessen, A.J., 2001. The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Letters 28, 6–10.

    Article  Google Scholar 

  • Shapiro, L., McAdams, H.H., Losick, R., 2002. Generating and exploiting polarity in bacteria. Science 298, 1942–1946.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 1995. Molecular evolution in bacteria. Antonie van Leeuwenhoek 67, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 1996. DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip. Antonie van Leeuwenhoek 70, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 1997a. Molecular evolution in bacteria: surfaces, cathodes and anodes. Antonie van Leeuwenhoek 71, 363–368.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 1997b. Molecular evolution and optimization. Antonie van Leeuwenhoek 72, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 2001a. Review: from chemosphere to biosphere. World Journal of Microbiology and Biotechnology 7, 651–655.

    Article  Google Scholar 

  • Trevors, J.T., 2001b. Molecular evolution: first enzymes, template and gases as substrates. Biology Forum 94, 105–122.

    PubMed  CAS  Google Scholar 

  • Trevors, J.T., 2002. Self-assembly of the first cells in a hydrophobic environment with hydrogen as the energy source. Biology Forum, in press.

  • Trevors, J.T., 2003a. The possible origin of a membrane in the subsurface of the Earth. Cell Biology International 27, 451–457.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 2003b. Early assembly of cellular life. Progress in Biophysics and Molecular Biology 81, 201–217.

    Article  PubMed  CAS  Google Scholar 

  • Trevors, J.T., 2003c. Self-assembly of the first bacterial cells in a geochemical environment. Geomicrobiology Journal 20, 175–183.

    Article  CAS  Google Scholar 

  • Trevors, J.T., Psenner, R., 2001. From self-assembly of life to present-day bacteria: a possible role for nanocells. FEMS Microbiology Reviews 25, 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Van den Ent, F., Lowe, J., 2000. Crystal structure of the cell division protein FtsA from Thermotoga maritima. The EMBO Journal 19, 5300–5307.

    Article  PubMed  Google Scholar 

  • Van den Ent, F., Amos, L., Lowe, J., 2001. Bacterial ancestry of actin and tubulin. Current Opinion in Microbiology 4, 634–638.

    Article  PubMed  Google Scholar 

  • White, D.C., 1986. Quantitative physicochemical characterization of bacterial habitats. In: Poindexter, J.S., Leadbetter, E.R. (Eds.), Bacteria in Nature, Vol. 2. Plenum Press, New York, USA, pp. 177–203.

    Google Scholar 

  • Whitman, W.B., Coleman, D.C., Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences USA 95, 6578–6583.

    Article  CAS  Google Scholar 

  • Wšchtershšuser, G., 1998. Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology 10, 207–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevors, J.T. Evolution of cell division in bacteria. Theory Biosci. 123, 3–15 (2004). https://doi.org/10.1016/j.thbio.2004.03.001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2004.03.001

Keywords

Navigation