Skip to main content
Log in

Myocardial perfusion and function single photon emission computed tomography

  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Suggested Reading

  1. Bateman TM, Berman DS, Heller GV, Brown KA, Cerqueira MD, Verani MS, et al. American Society of Nuclear Cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol 1999;6:470–1.

    Article  PubMed  CAS  Google Scholar 

  2. Berger BC, Watson DD, Taylor GJ, Craddock GB, Martin RP, Teates CD, et al. Quantitative thallium-201 exercise scintigraphy for detection of coronary artery disease. J Nucl Med 1981;22:585–93.

    PubMed  CAS  Google Scholar 

  3. Berger HJ, Matthay RA, Loke J, Marshall RC, Gottschalk A, Zaret BL. Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol 1978;41:897–905.

    Article  PubMed  CAS  Google Scholar 

  4. Berman DS, Kiat H, Friedman JD, Wang FP, van Train K, Matzer L, et al. Separate acquisition rest thallium-201/stress technetium- 99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 1993;22:1455–64.

    PubMed  CAS  Google Scholar 

  5. Berman DS, Kiat H, Van Train K, Garcia E, Friedman J, Maddahi J. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med 1991;21:190–212.

    Article  PubMed  CAS  Google Scholar 

  6. Borges-Neto S, Coleman RE, Potts JM, Jones RH. Combined exercise radionuclide angiocardiography and single photon emission computed tomography perfusion studies for assessment of coronary artery disease. Semin Nucl Med 1991;21:223–9.

    Article  PubMed  CAS  Google Scholar 

  7. Brent BN, Mahler D, Matthay RA, Berger HJ, Zaret BL. Noninvasive diagnosis of pulmonary arterial hypertension in chronic obstructive pulmonary disease: right ventricular ejection fraction at rest. Am J Cardiol 1984;53:1349–53.

    Article  PubMed  CAS  Google Scholar 

  8. Brooks RA, Chiro GD. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 1976;21:689–732.

    Article  PubMed  CAS  Google Scholar 

  9. Burow RD, Pond M, Schafer AW, Becker L. “Circumferential profiles:” a new method for computer analysis of thallium-201 myocardial perfusion images. J Nucl Med 1979;20:771–7.

    PubMed  CAS  Google Scholar 

  10. Caldwell JH, Williams DL, Harp GD, Stratton JR, Ritchie JL. Quantitation of size of relative myocardial perfusion defect by single-photon emission computed tomography. Circulation 1984;70:1048–56.

    PubMed  CAS  Google Scholar 

  11. Callahan RJ, Froelich JW, McKusick KA, Leppo J, Strauss HW. A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication. J Nucl Med 1982;23:315–8.

    PubMed  CAS  Google Scholar 

  12. Calnon DA, Kastner RJ, Smith WH, Segalla D, Beller GA, Watson DD. Validation of a new counts-based gated single photon emission computed tomography method for quantifying left ventricular systolic function: comparison with equilibrium radionuclide angiography. J Nucl Cardiol 1997;4:464–71.

    Article  PubMed  CAS  Google Scholar 

  13. Choi JY, Lee KH, Kim SJ, Kim SE, Kim BT, Lee SH, et al. Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium 99m tetrofosmin perfusion SPECT. J Nucl Cardiol 1998;5:395–401.

    Article  PubMed  CAS  Google Scholar 

  14. Chouraqui P, Rodrigues EA, Berman DS, Maddahi J. Significance of dipyridamole-induced transient dilation of the left ventricle during thallium-201 scintigraphy in suspected coronary artery disease. Am J Cardiol 1990;66:689–94.

    Article  PubMed  CAS  Google Scholar 

  15. Chua T, Kiat H, Germano G, Maurer G, van Train K, Friedman J, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. Correlation with echocardiography and rest thallium-201 scintigraphy. J Am Coll Cardiol 1994;23:1107–14.

    PubMed  CAS  Google Scholar 

  16. Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566–71.

    PubMed  CAS  Google Scholar 

  17. Cullom SJ, Case JA, Bateman TM. Electrocardiographically gated myocardial perfusion SPECT: technical principles and quality control considerations. J Nucl Cardiol 1998;5:418–25.

    Article  PubMed  CAS  Google Scholar 

  18. DePace NL, Iskandrian AS, Hakki AH, Kane SA, Segal BL. Value of left ventricular ejection fraction during exercise in predicting the extent of coronary artery disease. J Am Coll Cardiol 1983;1:1002–10.

    PubMed  CAS  Google Scholar 

  19. DePasquale EE, Nody AC, DePuey EG, Garcia EV, Pilcher G, Bredlau C, et al. Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 1988;77:316–27.

    PubMed  CAS  Google Scholar 

  20. DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871–6.

    PubMed  CAS  Google Scholar 

  21. DePuey EG, Parmett S, Ghesani M, Rozanski A, Nichols K, Salensky H. Comparison of Tc-99m sestamibi and Tl-201 gated perfusion SPECT. J Nucl Cardiol 1999;6:278–85.

    Article  PubMed  CAS  Google Scholar 

  22. Dilsizian V, Perrone-Filardi P, Arrighi JA, Bacharach SL, Quyyumi AA, Freedman NM, et al. Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Comparison with metabolic activity by positron emission tomography. Circulation 1993;88:941–52.

    PubMed  CAS  Google Scholar 

  23. Eisner R, Churchwell A, Noever T, Nowak D, Cloninger K, Dunn D, et al. Quantitative analysis of the tomographic thallium-201 myocardial bullseye display: critical role of correcting for patient motion. J Nucl Med 1988;29:91–7.

    PubMed  CAS  Google Scholar 

  24. Eisner RL, Nowak DJ, Pettigrew R, Fajman W. Fundamentals of 180 degree acquisition and reconstruction in SPECT imaging. J Nucl Med 1986;27:1717–28.

    PubMed  CAS  Google Scholar 

  25. Esquerre JP, Coca FJ, Martinez SJ, Guiraud RF. Prone decubitus: a solution to inferior wall attenuation in thallium-201 myocardial tomography. J Nucl Med 1989;30:398–401.

    PubMed  CAS  Google Scholar 

  26. Faber TL, Akers MS, Peshock RM, Corbett JR. Threedimensional motion and perfusion quantification in gated single-photon emission computed tomograms. J Nucl Med 1991;32:2311–7.

    PubMed  CAS  Google Scholar 

  27. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 1999;40:650–9.

    PubMed  CAS  Google Scholar 

  28. Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography. Diagnostic accuracy of attenuation-corrected 99mTc-sestamibi single-photon emission computed tomography. Circulation 1996;93:463–73.

    PubMed  CAS  Google Scholar 

  29. Foster C, Dymond DS, Anholm JD, Pollock ML, Schmidt DH. Effect of exercise protocol on the left ventricular response to exercise. Am J Cardiol 1983;51:859–64.

    Article  PubMed  CAS  Google Scholar 

  30. Fricke H, Fricke E, Weise R, Kammeier A, Lindner O, Burchert W. A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT Introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med 2004;45:1619–25.

    PubMed  Google Scholar 

  31. Friedman J, Berman DS, Van Train K, Garcia EV, Bietendorf J, Prigent F, et al. Patient motion in thallium-201 myocardial SPECT imaging. An easily identified frequent source of artifactual defect. Clin Nucl Med 1988;13:321–4.

    Article  PubMed  CAS  Google Scholar 

  32. Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stressredistribution SPECT. J Nucl Med 1989;30:1718–22.

    PubMed  CAS  Google Scholar 

  33. Friedman JD, Berman DS, Kiat H, Bietendorf J, Hyun M, Van Train KF, et al. Rest and treadmill exercise first-pass radionuclide ventriculography: validation of left ventricular ejection fraction measurements. J Nucl Cardiol 1994;1:382–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gal R, Grenier RP, Carpenter J, Schmidt DH, Port SC. High count rate first-pass radionuclide angiography using a digital gamma camera. J Nucl Med 1986;27:198–206.

    PubMed  CAS  Google Scholar 

  35. Garcia EV, Cooke CD, Van Train KF, Folks R, Peifer J, DePuey EG, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990;66:23E-31E.

    Article  PubMed  CAS  Google Scholar 

  36. Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 1985;26:17–26.

    PubMed  CAS  Google Scholar 

  37. Germano G, Erel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and qualitative regional function from gated thallium- 201 perfusion SPECT. J Nucl Med 1997;38:749–54.

    PubMed  CAS  Google Scholar 

  38. Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997;30:1360–7.

    Article  PubMed  CAS  Google Scholar 

  39. Germano G, Kavanagh PB, Su HT, Mazzanti M, Kiat H, Hachamovitch R, et al. Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images. J Nucl Med 1995;36:1107–14.

    PubMed  CAS  Google Scholar 

  40. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  41. Gibbons RJ, Lee KL, Cobb F, Jones RH. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms. Circulation 1981;64:952–7.

    PubMed  CAS  Google Scholar 

  42. Gibbons RJ, Verani MS, Behrenbeck T, Pellikka PA, O’Connor MK, Mahmarian JJ, et al. Feasibility of tomographic 99mTc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 1989;80:1277–86.

    PubMed  CAS  Google Scholar 

  43. Gill JB, Ruddy TD, Newell JB, Finkelstein DM, Strauss HW, Boucher CA. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987;317:1486–9.

    PubMed  CAS  Google Scholar 

  44. Goerres GW, Burger C, Kamel E, Seifert B, Kaim AH, Buck A, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 2003;226:906–10.

    Article  PubMed  Google Scholar 

  45. Greer KL, Jaszczak RJ, Coleman RE. An overview of a camerabased SPECT system. Med Phys 1982;9:455–63.

    Article  PubMed  CAS  Google Scholar 

  46. Grossman GB, Garcia EV, Bateman TM, Heller GV, Johnson LL, Folks RD, et al. Quantitative Tc-99m sestamibi attenuation- corrected SPECT: development and multicenter trial validation of myocardial perfusion stress gender-independent normal database in an obese population. J Nucl Cardiol 2004;11:263–72.

    Article  PubMed  Google Scholar 

  47. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535–43.

    PubMed  CAS  Google Scholar 

  48. Hansen C. Digital image processing for clinicians, part I: basics of image formation. J Nucl Cardiol 2002;9:343–9.

    Article  PubMed  Google Scholar 

  49. Hansen C. Digital image processing for clinicians, part II: filtering. J Nucl Cardiol 2002;9:429–37.

    Article  PubMed  Google Scholar 

  50. Hansen C. Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol 2002;9:542–9.

    Article  PubMed  Google Scholar 

  51. Hansen CL, Cen P, Sanchez B, Robinson R. Comparison of pulmonary uptake with transient cavity dilation after dipyridamole Tl-201 perfusion imaging. J Nucl Cardiol 2002;9:47–51.

    Article  PubMed  Google Scholar 

  52. Hansen CL, Sangrigoli R, Nkadi E, Kramer M. Comparison of pulmonary uptake with transient cavity dilation after exercise thallium-201 perfusion imaging. J Am Coll Cardiol 1999;33:1323–7.

    Article  PubMed  CAS  Google Scholar 

  53. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 1998;32:57–62.

    Article  PubMed  CAS  Google Scholar 

  54. Iskandrian AE, Germano G, VanDecker W, Ogilby JD, Wolf N, Mintz R, et al. Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 1998;5:574–8.

    Article  PubMed  CAS  Google Scholar 

  55. Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22:665–670.

    PubMed  CAS  Google Scholar 

  56. Johnson LL, Rodney RA, Vaccarino RA, Egbe P, Wasserman L, Esser PD, et al. Left ventricular perfusion and performance from a single radiopharmaceutical and one camera. J Nucl Med 1992;33:1411–6.

    PubMed  CAS  Google Scholar 

  57. Johnson LL, Verdesca SA, Aude WY, Xavier RC, Nott LT, Campanella MW, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on poststress gated sestamibi tomograms. J Am Coll Cardiol 1997;30:1641–8.

    Article  PubMed  CAS  Google Scholar 

  58. Kaul S, Chesler DA, Boucher CA, Okada RD. Quantitative aspects of myocardial perfusion imaging. Semin Nucl Med 1987;17:131–44.

    Article  PubMed  CAS  Google Scholar 

  59. Kaul S, Chesler DA, Okada RD, Boucher CA. Computer versus visual analysis of exercise thallium-201 images: a critical appraisal in 325 patients with chest pain. Am Heart J 1987;114:1129–37.

    Article  PubMed  CAS  Google Scholar 

  60. Kelly MJ, Cowie AR, Antonino A, Barton H, Kalff V. An assessment of factors which influence the effectiveness of the modified in vivo technetium-99m-erythrocyte labeling technique in clinical use. J Nucl Med 1992;33:2222–5.

    PubMed  CAS  Google Scholar 

  61. Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozanski A, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988;12:1456–63.

    PubMed  CAS  Google Scholar 

  62. Kiat H, Van Train KF, Friedman JD, Germano G, Silagan G, Wang FP, et al. Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med 1992;33:1509–15.

    PubMed  CAS  Google Scholar 

  63. King MA, Glick SJ, Penney BC, Schwinger RB, Doherty PW. Interactive visual optimization of SPECT prereconstruction filtering. J Nucl Med 1987;28:1192–8.

    PubMed  CAS  Google Scholar 

  64. King MA, Schwinger RB, Doherty PW, Penney BC. Twodimensional filtering of SPECT images using the Metz and Wiener filters. J Nucl Med 1984;25:1234–40.

    PubMed  CAS  Google Scholar 

  65. Klein JL, Garcia EV, DePuey EG, Campbell J, Taylor AT, Pettigrew RI, et al. Reversibility bull’s-eye: a new polar bull’seye map to quantify reversibility of stress-induced SPECT thallium- 201 myocardial perfusion defects. J Nucl Med 1990;31:1240–6.

    PubMed  CAS  Google Scholar 

  66. Koster K, Wackers FJ, Mattera JA, Fetterman RC. Quantitative analysis of planar technetium-99m-sestamibi myocardial perfusion images using modified background subtraction. J Nucl Med 1990;31:1400–8.

    PubMed  CAS  Google Scholar 

  67. Lee KL, Pryor DB, Pieper KS, Harrell FE, Califf RM, Mark DB, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease. A comparison with clinical and catheterization variables. Circulation 1990;82:1705–17.

    PubMed  CAS  Google Scholar 

  68. Levy R, Rozanski A, Berman DS, Garcia E, Van Train K, Maddahi J, et al. Analysis of the degree of pulmonary thallium washout after exercise in patients with coronary artery disease. J Am Coll Cardiol 1983;2:719–28.

    PubMed  CAS  Google Scholar 

  69. Liu YH, Lam PT, Sinusas AJ, Wackers FJ. Differential effect of 180 degrees and 360 degrees acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms [see comments]. J Nucl Med 2002;43:1115–24.

    PubMed  Google Scholar 

  70. Maddahi J, Garcia EV, Berman DS, Waxman A, Swan HJ, Forrester J. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation 1981;64:924–35.

    PubMed  CAS  Google Scholar 

  71. Mahmarian JJ, Boyce TM, Goldberg RK, Cocanougher MK, Roberts R, Verani MS. Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol 1990;15:318–29.

    PubMed  CAS  Google Scholar 

  72. Maniawski PJ, Morgan HT, Wackers FJ. Orbit-related variation in spatial resolution as a source of artifactual defects in thallium- 201 SPECT. J Nucl Med 1991;32:871–5.

    PubMed  CAS  Google Scholar 

  73. Massardo T, Gal RA, Grenier RP, Schmidt DH, Port SC. Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. J Nucl Med 1990;31:450–6.

    PubMed  CAS  Google Scholar 

  74. Mochizuki T, Murase K, Tanaka H, Kondoh T, Hamamoto K, Tauxe WN. Assessment of left ventricular volume using ECGgated SPECT with technetium-99m-MIBI and technetium-99mtetrofosmin. J Nucl Med 1997;38:53–7.

    PubMed  CAS  Google Scholar 

  75. Nallamothu N, Bagheri B, Acio ER, Heo J, Iskandrian AE. Prognostic value of stress myocardial perfusion single photon emission computed tomography imaging in patients with left ventricular bundle branch block. J Nucl Cardiol 1997;4:487–93.

    Article  PubMed  CAS  Google Scholar 

  76. Nichols K, DePuey EG, Krasnow N, Lefkowitz D, Rozanski A. Reliability of enhanced gated SPECT in assessing wall motion of severely hypoperfused myocardium: echocardiographic validation. J Nucl Cardiol 1998;5:387–94.

    Article  PubMed  CAS  Google Scholar 

  77. Nichols K, DePuey EG, Rozanski A. Automation of gated tomographic left ventricular ejection fraction. J Nucl Cardiol 1996;3(Pt 1):475–82.

    Article  PubMed  CAS  Google Scholar 

  78. Nichols K, Dorbala S, DePuey EG, Yao SS, Sharma A, Rozanski A. Influence of arrhythmias on gated SPECT myocardial perfusion and function quantification. J Nucl Med 1999;40:924–34.

    PubMed  CAS  Google Scholar 

  79. Nichols K, Tamis J, DePuey EG, Mieres J, Malhotra S, Rozanski A. Relationship of gated SPECT ventricular function parameters to angiographic measurements. J Nucl Cardiol 1998;5:295–303.

    Article  PubMed  CAS  Google Scholar 

  80. Nuyts J, Mortelmans L, Suetens P, Oosterlinck A, de Rou M. Model-based quantification of myocardial perfusion images from SPECT. J Nucl Med 1989;30:1992–2001.

    PubMed  CAS  Google Scholar 

  81. O’Keefe JH, Bateman TM, Ligon RW, Case J, Cullom J, Barnhart C, et al. Outcome of medical versus invasive treatment strategies for non-high-risk ischemic heart disease. J Nucl Cardiol 1998;5:28–33.

    Article  PubMed  Google Scholar 

  82. Philippe L, Mena I, Darcourt J, French WJ. Evaluation of valvular regurgitation by factor analysis of first-pass angiography. J Nucl Med 1988;29:159–67.

    PubMed  CAS  Google Scholar 

  83. Port S, Cobb FR, Coleman RE, Jones RH. Effect of age on the response of the left ventricular ejection fraction to exercise. N Engl J Med 1980;303:1133–7.

    PubMed  CAS  Google Scholar 

  84. Port S, McEwan P, Cobb FR, Jones RH. Influence of resting left ventricular function on the left ventricular response to exercise in patients with coronary artery disease. Circulation 1981;63:856–63.

    PubMed  CAS  Google Scholar 

  85. Port SC, Oshima M, Ray G, McNamee P, Schmidt DH. Assessment of single vessel coronary artery disease: results of exercise electrocardiography, thallium-201 myocardial perfusion imaging and radionuclide angiography. J Am Coll Cardiol 1985;6:75–83.

    PubMed  CAS  Google Scholar 

  86. Port SC, Wackers FJ. Clinical application of radionuclide angiography. J Nucl Cardiol 1995;2:551–8.

    Article  PubMed  CAS  Google Scholar 

  87. Proceedings of the 4th Invitational Wintergreen Conference. Wintergreen, Virginia, USA. July 12–14, 1998. Abstracts. J Nucl Cardiol 1999;6(Pt 1):93–155.

  88. Pryor DB, Harrell FE, Lee KL, Rosati RA, Coleman RE, Cobb FR, et al. Prognostic indicators from radionuclide angiography in medically treated patients with coronary artery disease. Am J Cardiol 1984;53:18–22.

    Article  PubMed  CAS  Google Scholar 

  89. Raiker K, Sinusas AJ, Wackers FJ, Zaret BL. One-year prognosis of patients with normal planar or single-photon emission computed tomographic technetium 99m-labeled sestamibi exercise imaging. J Nucl Cardiol 1994;1(Pt 1):449–56.

    Article  PubMed  CAS  Google Scholar 

  90. Reisman S, Maddahi J, Van Train K, Garcia E, Berman D. Quantitation of extent, depth, and severity of planar thallium defects in patients undergoing exercise thallium-201 scintigraphy. J Nucl Med 1986;27:1273–81.

    PubMed  CAS  Google Scholar 

  91. Rogers WL, Clinthorne NH, Harkness BA, Koral KF, Keyes JW. Field-flood requirements for emission computed tomography with an Anger camera. J Nucl Med 1982;23:162–8.

    PubMed  CAS  Google Scholar 

  92. Sabia PJ, Powers ER, Ragosta M, Smith WH, Watson DD, Kaul S. Role of quantitative planar thallium-201 imaging for determining viability in patients with acute myocardial infarction and a totally occluded infarct-related artery. J Nucl Med 1993;34:728–36.

    PubMed  CAS  Google Scholar 

  93. Santoro GM, Sciagra R, Buonamici P, Consoli N, Mazzoni V, Zerauschek F, et al. Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first-line examination for chest pain in patients without history of coronary artery disease. J Nucl Cardiol 1998;5:19–27.

    Article  PubMed  CAS  Google Scholar 

  94. Segall GM, Davis MJ. Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med 1989;30:548–55.

    PubMed  CAS  Google Scholar 

  95. Shanoudy H, Raggi P, Beller GA, Soliman A, Ammermann EG, Kastner RJ, et al. Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol 1998;31:331–7.

    Article  PubMed  CAS  Google Scholar 

  96. Sigal SL, Soufer R, Fetterman RC, Mattera JA, Wackers FJ. Reproducibility of quantitative planar thallium-201 scintigraphy: quantitative criteria for reversibility of myocardial perfusion defects. J Nucl Med 1991;32:759–65.

    PubMed  CAS  Google Scholar 

  97. Sinusas AJ, Beller GA, Smith WH, Vinson EL, Brookeman V, Watson DD. Quantitative planar imaging with technetium-99m methoxyisobutyl isonitrile: comparison of uptake patterns with thallium-201. J Nucl Med 1989;30:1456–63.

    PubMed  CAS  Google Scholar 

  98. Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi singlephoton emission computed tomographic imaging. J Am Coll Cardiol 1997;30:1687–92.

    Article  PubMed  CAS  Google Scholar 

  99. Smith WH, Watson DD. Technical aspects of myocardial planar imaging with technetium-99m sestamibi. Am J Cardiol 1990;66:16E-22E.

    Article  PubMed  CAS  Google Scholar 

  100. Van Train KF, Areeda J, Garcia EV, Cooke CD, Maddahi J, Kiat H, et al. Quantitative same-day rest-stress technetium-99msestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993;34:1494–502.

    Google Scholar 

  101. Van Train KF, Berman DS, Garcia EV, Berger HJ, Sands MJ, Friedman JD, et al. Quantitative analysis of stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1986;27:17–25.

    PubMed  Google Scholar 

  102. Van Train KF, Garcia EV, Maddahi J, Areeda J, Cooke CD, Kiat H, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35:609–18.

    PubMed  Google Scholar 

  103. Van Train KF, Maddahi J, Berman DS, Kiat H, Areeda J, Prigent F, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1990;31:1168–79.

    PubMed  Google Scholar 

  104. Wackers FJ. Artifacts in planar and SPECT myocardial perfusion imaging. Am J Card Imaging 1992;6:42–57, discussion 58.

    PubMed  CAS  Google Scholar 

  105. Wackers FJ, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol 1979;43:1159–66.

    Article  PubMed  CAS  Google Scholar 

  106. Watson DD, Campbell NP, Read EK, Gibson RS, Teates CD, Beller GA. Spatial and temporal quantitation of plane thallium myocardial images. J Nucl Med 1981;22:577–84.

    PubMed  CAS  Google Scholar 

  107. Weiss AT, Berman DS, Lew AS, Nielsen J, Potkin B, Swan HJ, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9:752–9.

    Article  PubMed  CAS  Google Scholar 

  108. Williams KA, Taillon LA, Draho JM, Foisy MF. First-pass radionuclide angiographic studies of left ventricular function with technetium-99m-teboroxime, technetium-99m-sestamibi and technetium-99m-DTPA. J Nucl Med 1993;34:394–9.

    PubMed  CAS  Google Scholar 

  109. Winzelberg GG, Boucher CA, Pohost GM, McKusick KA, Bingham JB, Okada RD, et al. Right ventricular function in aortic and mitral valve disease. Chest 1981;79:520–8.

    Article  PubMed  CAS  Google Scholar 

  110. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, C.L., Goldstein, R.A., Berman, D.S. et al. Myocardial perfusion and function single photon emission computed tomography. J Nucl Cardiol 13, e97–e120 (2006). https://doi.org/10.1016/j.nuclcard.2006.08.008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.08.008

Keywords

Navigation