Skip to main content
Log in

Current and future status on cardiac computed tomography imaging for diagnosis and risk stratification

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Computed tomography (CT) permits cross-sectional imaging with high spatial resolution and has, during the past years, undergone tremendous development mainly concerning the temporal resolution. By use of multidetector spiral technology, as well as electrocardiographygated image acquisition and reconstruction techniques, 16- and 64-slice CT permits visualization of cardiac morphology and function. In this context, however, CT imaging does not play a major clinical role because other imaging methods (mainly echocardiography) usually provide all necessary information. Under certain conditions, multidetector CT also permits visualization of the coronary arteries. Detection of coronary calcification, as well as coronary CT angiography, can provide clinically useful information if applied to suitable patient groups. It is foreseeable that CT angiography will become part of the routine workup in some subsets of patients with suspected coronary artery disease, either alone or in combination with other imaging techniques. Among the limitations of cardiac CT are the requirement of a regular (and preferably low) heart rate, the associated x-ray exposure, and the need for an iodinated contrast agent for most applications. It is important to note that reliable and accurate results will require use of the most advanced CT scanner technology, optimal image quality, and sufficient experience in the acquisition and interpretation of cardiac CT data sets. (J Nucl Cardiol 2005;12:703-13.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunold P, Wogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, et al. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 2003;226:145–52.

    Article  PubMed  Google Scholar 

  2. Bae KT, Hong C, Whiting BR. Radiation dose in multidetector row computed tomography cardiac imaging. J Magn Reson Imaging 2004;19:859–63.

    Article  PubMed  Google Scholar 

  3. Gerber TC, Stratmann BP, Kuzo RS, Kantor B, Morin RL. Effect of acquisition technique on radiation dose and image quality in multidetector row computed tomography coronary angiography with submillimeter collimation. Invest Radiol 2005;40:556–63.

    Article  PubMed  Google Scholar 

  4. Poll LW, Cohnen M, Brachten S, Ewen K, Modder U. Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing“): phantom measurements. Rofo 2002;174:1500–5.

    PubMed  CAS  Google Scholar 

  5. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081–6.

    Article  PubMed  Google Scholar 

  6. Gilkeson RC, Ciancibello L, Zahka K. Pictorial essay. Multidetector CT evaluation of congenital heart disease in pediatric and adult patients. AJR Am J Roentgenol 2003;180:973–80.

    PubMed  CAS  Google Scholar 

  7. Lembcke A, Koch C, Dohmen PM, Rutsch W, Abbara S, Krug LD, et al. Electrocardiographic-gated multislice computed tomography for visualization of cardiac morphology in congenitally corrected transposition of the great arteries. J Comput Assist Tomogr 2005;29:234–7.

    Article  PubMed  Google Scholar 

  8. Halliburton SS, Petersilka M, Schvartzman PR, Obuchowski N, White RD. Evaluation of left ventricular dysfunction using multiphasic reconstructions of coronary multi-slice computed tomography data in patients with chronic ischemic heart disease: validation against cine magnetic resonance imaging. Int J Cardiovasc Imaging 2003;19:73–8.

    Article  PubMed  Google Scholar 

  9. Grude M, Juergens KU, Wichter T, Paul M, Fallenberg EM, Muller JG, et al. Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol 2003;38:653–61.

    Article  PubMed  Google Scholar 

  10. Martuscelli E, Romagnoli A, D’Eliseo A, Razzini C, Tomassini M, Sperandio M, et al. Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 2004;25:1043–8.

    Article  PubMed  Google Scholar 

  11. Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ. Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 2005;91:308–13.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmann MHK, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R, et al. Noninvasive coronary angiography with multislice computed tomography. JAMA 2005;293:2471–8.

    Article  PubMed  CAS  Google Scholar 

  13. Mollet NR, Cademartiri F, Krestin GP, McFadden EP, Arampatzis CA, Serruys PW, et al. Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 2005;45:128–32.

    Article  PubMed  Google Scholar 

  14. Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C, et al. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16-detector slice spiral computed tomography with 188 ms temporal resolution. Heart 2005; 91:938–41.

    Article  PubMed  CAS  Google Scholar 

  15. Achenbach S, Ropers D, Pohle FK, Raaz D, von Erffa J, Yilmaz A, et al. Detection of coronary artery stenoses using multi-detector CT with 16x0.75 mm collimation and 375 ms rotation. Eur Heart J 2005;26:1978–86.

    Article  PubMed  Google Scholar 

  16. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grünenfelder J, Marincek B, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005;26:1482–7.

    Article  PubMed  Google Scholar 

  17. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. A comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005;46:147–54.

    Article  PubMed  Google Scholar 

  18. Raff GJ, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46:552–7.

    Article  PubMed  Google Scholar 

  19. Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S. Visualization of coronary artery anomalies and their course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol 2001;87:193–7.

    Article  PubMed  CAS  Google Scholar 

  20. Deibler AR, Kuzo RS, Vohringer M, Page EE, Safford RE, Patron JN, et al. Imaging of congenital coronary anomalies with multislice computed tomography. Mayo Clin Proc 2004;79:1017–23.

    Article  PubMed  Google Scholar 

  21. Datta J, White CS, Gilkeson RC, Meyer CA, Kansal S, Jani ML, et al. Anomalous coronary arteries in adults: depiction at multidetector row CT angiography. Radiology 2005;235:812–8.

    Article  PubMed  Google Scholar 

  22. Nieman K, Pattynama PMT, Rensing BJ, van Geins RJM, de Feyter PJ. Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology 2003;229:749–56.

    Article  PubMed  Google Scholar 

  23. Martuscelli E, Romagnoli A, D’Eliseo A, Tomassini M, Razzini C, Sperandio M, et al. Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation 2004;110:3234–8.

    Article  PubMed  CAS  Google Scholar 

  24. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol 2004;44:1224–9.

    Article  PubMed  Google Scholar 

  25. Chiurlia E, Menozzi M, Ratti C, Romagnoli R, Modena MG. Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol 2005;95:1094–7.

    Article  PubMed  Google Scholar 

  26. Gilard M, Comly JC, Rioufol G, Finet G, Pennec PY, Mansourati J. Noninvasive assessment of left main coronary stent patency with 16-slice computed tomography. Am J Cardiol 2005;95:110–2.

    Article  PubMed  Google Scholar 

  27. Schuijf JD, Bax JJ, Jukema JW, Lamb HJ, Warda HM, Vliegen HW, et al. Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 2004;94:427- 30.

    Article  PubMed  Google Scholar 

  28. Maintz D, Grude M, Fallenberg EM, Heindel W, Fischbach R. Assessment of coronary arterial stents by multislice-CT angiography. Acta Radiol 2003;44:597–603.

    Article  PubMed  CAS  Google Scholar 

  29. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827–32.

    Article  PubMed  CAS  Google Scholar 

  30. Detrano RC, Anderson M, Nelson J, Wong ND, Carr JJ, McNitt-Gray M, et al. Coronary calcium measurements: effect of CT scanner type and calcium measure on rescan reproducibility— MESA study. Radiology 2005;236:477–84.

    Article  PubMed  Google Scholar 

  31. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregiore J, Fitzpatrick LE, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 1998;31:126–33.

    Article  PubMed  CAS  Google Scholar 

  32. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826–33.

    Article  PubMed  Google Scholar 

  33. Raggi P, Callister TQ, Cooil N, He ZX, Lippolis NJ, Russo DJ, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 2000;101:850–5.

    PubMed  CAS  Google Scholar 

  34. Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijk W, van Rooij FJ, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 2005;112:572–7.

    Article  PubMed  Google Scholar 

  35. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004;291:210–5.

    Article  PubMed  CAS  Google Scholar 

  36. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 2005;46:158–65.

    Article  PubMed  CAS  Google Scholar 

  37. Greenland P, Smith SC, Grundy SM. Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation 2001;104:1863–7.

    Article  PubMed  CAS  Google Scholar 

  38. Weintraub WS. Coronary artery calcium and cardiac events: is electron-beam tomography ready for prime time? Circulation 2003;107:2528–30.

    Article  PubMed  Google Scholar 

  39. Raggi P, Cooil B, Shaw LJ, Abhoulson J, Takasu J, Budoff M, et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol 2003;92:827–9.

    Article  PubMed  Google Scholar 

  40. Raggi P, Cooil B, Ratti C, Callister TQ, Budoff M. Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus. Hypertension 2005; 46:238–43.

    Article  PubMed  CAS  Google Scholar 

  41. Raggi P, Davidson M, Callister TQ, Welty FK, Bachmann GA, Hecht H, et al. Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic postmenopausal women: Beyond Endorsed Lipid Lowering with EBT Scanning (BELLES). Circulation 2005;112:563–71.

    Article  PubMed  CAS  Google Scholar 

  42. Arad Y, Sparado LA, Roth M, Newstein D, Guerci AD. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol 2005;4:166–72.

    Article  CAS  Google Scholar 

  43. Wong ND, Kawakubo M, LaBree L, Azen SP, Xiang M, Detrano R. Relation of coronary calcium progression and control of lipids according to National Cholesterol Education Program guidelines. Am J Cardiol 2004;94:431–6.

    Article  PubMed  CAS  Google Scholar 

  44. Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 2002;106:1077–82.

    Article  PubMed  CAS  Google Scholar 

  45. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 1998;339:1972–8.

    Article  PubMed  CAS  Google Scholar 

  46. Budoff MJ, Lane KL, Baksheshi H, Mao S, Grassmann BO, Friedman BC, et al. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol 2000;86:8–11.

    Article  PubMed  CAS  Google Scholar 

  47. Becker CR, Knez A, Ohnesorge B, Schoepf UJ, Reiser MF. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol 2000;175:423–4.

    PubMed  CAS  Google Scholar 

  48. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004;109:14–7.

    Article  PubMed  Google Scholar 

  49. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary athero- sclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 2004;43:1241–7.

    Article  PubMed  Google Scholar 

  50. Schoenhagen P, Tuzcu EM, Stillman AE, Moliterno DJ, Halliburton SS, Kuzmiak SA, et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary artery segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis 2003;14:459- 62.

    Article  PubMed  Google Scholar 

  51. Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001;37:1430–5.

    Article  PubMed  CAS  Google Scholar 

  52. Caussin C, Ohanessian A, Ghostine S, Jacq L, Lancelin B, Dambrin G, et al. Characterization of vulnerable nonstenotic plaque with 16-slice computed tomography compared with intravascular ultrasound. Am J Cardiol 2004;94:99–100.

    Article  PubMed  Google Scholar 

  53. Becker CR, Nikolaou K, Muders M, Babaryka G, Crispin A, Schoepf UJ, et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 2003;13:2094–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Achenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achenbach, S. Current and future status on cardiac computed tomography imaging for diagnosis and risk stratification. J Nucl Cardiol 12, 703–713 (2005). https://doi.org/10.1016/j.nuclcard.2005.09.001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2005.09.001

Keywords

Navigation