Skip to main content
Log in

Evaluation of the influence of amino acid composition on the propensity for collision-induced dissociation of model peptides using molecular dynamics simulations

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The dynamical behavior of model peptides was evaluated with respect to their ability to form internal proton donor-acceptor pairs using molecular dynamics simulations. The proton donor-acceptor pairs are postulated to be prerequisites for peptide bond cleavage resulting in formation of b and y ions during low-energy collision-induced dissociation in tandem mass spectrometry (MS/MS). The simulations for the polyalanine pentamer Ala5H+ were compared with experimental data from energy-resolved surface induced dissociation (SID) studies. The results of the simulation are insightful into the events that likely lead up to the fragmentation of peptides. Nine-mer polyalanine-based model peptides were used to examine the dynamical effect of each of the 20 common amino acids on the probability to form donor-acceptor pairs at labile peptide bonds. A range of probabilities was observed as a function of the substituted amino acid. However, the location of the peptide bond involved in the donor-acceptor pair plays a critical role in the dynamical behavior. This influence of position on the probability of forming a donor-acceptor pair would be hard to predict from statistical analyses on experimental spectra of aggregate, diverse peptides. In addition, the inclusion of basic side chains in the model peptides alters the probability of forming donor-acceptor pairs across the entire backbone. In this case, there are still more ionizing protons than basic residues, but the side chains of the basic amino acids form stable hydrogen bond networks with the peptide carbonyl oxygens and thus act to prevent free access of “mobile protons” to labile peptide bonds. It is clear from the work that the identification of peptides from low-energy CID using automated computational methods should consider the location of the fragmenting bond as well as the amino acid composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422(6928), 198–207.

    Article  CAS  Google Scholar 

  2. Smith, R. D.; Anderson, G. A.; Lipton, M. S.; Pasa-Tolic, L.; Shen, Y.; Conrads, T. P.; Veenstra, T. D.; Udseth, H. R. An Accurate Mass Tag Strategy for Quantitative and High-Throughput Proteome Measurements. Proteomics 2002, 2(5), 513–523.

    Article  CAS  Google Scholar 

  3. Wolters, D. A.; Washburn, M. P.; Yates, J. R. III. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 2001, 73(23), 5683–5690.

    Article  CAS  Google Scholar 

  4. Cannon, W. R.; Jarman, K. H.; Webb-Robertson, B.-J.; Baxter, D. J.; Oehmen, C. S.; Jarman, K. D.; Heredia-Langner, A.; Auberry, K. J.; Anderson, D. C. A Comparison of Probability and Likelihood Models for Peptide Identification from Tandem Mass Spectrometry Data. J. Proteome Res. 2005, 4(5), 1687–1698.

    Article  CAS  Google Scholar 

  5. Colinge, J.; Masselot, A.; Giron, M.; Dessingy, T.; Magnin, J. OLAV: Towards High-Throughput Tandem Mass Spectrometry Data Identification. Proteomics 2003, 3(8), 1454–1463.

    Article  CAS  Google Scholar 

  6. Dancik, V.; Addona, T. A.; Clauser, K. R.; Vath, J. E.; Pevzner, P. A. De Novo Peptide Sequencing Via Tandem Mass Spectrometry. J. Comput. Biol. 1999, 6(3/4), 327–342.

    Article  CAS  Google Scholar 

  7. Elias, J. E.; Gibbons, F. D.; King, O. D.; Roth, F. P.; Gygi, S. P. Intensity-Based Protein Identification by Machine Learning from a Library of Tandem Mass Spectra. Nat. Biotechnol. 2004, 22(2), 214–219.

    Article  CAS  Google Scholar 

  8. Havilio, M.; Haddad, Y.; Smilansky, Z. Intensity-Based Statistical Scorer for Tandem Mass Spectrometry. Anal. Chem. 2003, 75(3), 435–444.

    Article  CAS  Google Scholar 

  9. Sadygov, R.; Wohlschlegel, J.; Park, S. K.; Xu, T.; Yates, J. R. III. Central Limit Theorem as an Approximation for Intensity-Based Scoring Function. Anal. Chem. 2006, 78(1), 89–95.

    Article  CAS  Google Scholar 

  10. Sadygov, R. G.; Yates, J. R. A Hypergeometric Probability Model for Protein Identification and Validation Using Tandem Mass Spectral Data and Protein Sequence Databases. Anal. Chem. 2003, 75(15), 3792–3798.

    Article  CAS  Google Scholar 

  11. Zhang, Z. Q. Prediction of Low-Energy Collision-Induced Dissociation Spectra of Peptides with Three or More Charges. Anal. Chem. 2005, 77(19), 6364–6373.

    Article  CAS  Google Scholar 

  12. Zhang, Z. Q. Prediction of Low-Energy Collision-Induced Dissociation Spectra of Peptides. Anal. Chem. 2004, 76(14), 3908–3922.

    Article  CAS  Google Scholar 

  13. Kapp, E. A.; Schutz, F.; Reid, G. E.; Eddes, J. S.; Moritz, R. L.; O’Hair, R. A. J.; Speed, T. P.; Simpson, R. J. Mining a Tandem Mass Spectrometry Database to Determine the Trends and Global Factors Influencing Peptide Fragmentation. Anal. Chem. 2003, 75(22), 6251–6264.

    Article  CAS  Google Scholar 

  14. Tabb, D. L.; Smith, L. L.; Breci, L. A.; Wysocki, V. H.; Lin, D.; Yates, J. R., III. Statistical Characterization of Ion Trap Mass Spectra from Doubly Charged Tryptic Peptides. Anal. Chem. 2003, 75(5), 1155–1163.

    Article  CAS  Google Scholar 

  15. Huang, Y. Y.; Triscari, J. M.; Tseng, G. C.; Pasa-Tolic, L.; Lipton, M. S.; Smith, R. D.; Wysocki, V. H. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns. Anal. Chem. 2005, 77(18), 5800–5813.

    Article  CAS  Google Scholar 

  16. O’Hair, R. A. J. Commentary—The Role of Nucleophile-Electrophile Interactions in the Unimolecular and Bimolecular Gas-Phase Ion Chemistry of Peptides and Related Systems. J. Mass Spectrom. 2000, 35(12), 1377–1381.

    Article  Google Scholar 

  17. Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev. 2005, 24(4), 508–548.

    Article  CAS  Google Scholar 

  18. Polce, M. J.; Ren, D.; Wesdemiotis, C. Special Feature: Commentary—Dissociation of the Peptide Bond in Protonated Peptides. J. Mass Spectrom. 2000, 35(12), 1391–1398.

    Article  CAS  Google Scholar 

  19. Schlosser, A.; Lehmann, W. D. Special Feature: Commentary—Five-Membered Ring Formation in Unimolecular Reactions of Peptides: A Key Structural Element Controlling Low-Energy Collision-Induced Dissociation of Peptides. J. Mass Spectrom. 2000, 35(12), 1382–1390.

    Article  CAS  Google Scholar 

  20. Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Special Feature: Commentary—Mobile and Localized Protons: A Framework for Understanding Peptide Dissociation. J. Mass Spectrom. 2000, 35(12), 1399–1406.

    Article  CAS  Google Scholar 

  21. Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118(35), 8365–8374.

    Article  CAS  Google Scholar 

  22. Bailey, T. H.; Laskin, J.; Futrell, J. H. Energetics of Selective Cleavage at Acidic Residues Studied by Time- and Energy-Resolved Surface-Induced Dissociation in FT-ICR MS. Int. J. Mass Spectrom. 2003, 222(1/3), 313–327.

    Article  CAS  Google Scholar 

  23. Laskin, J.; Bailey, T. H.; Futrell, J. H. Fragmentation Energetics for Angiotensin II and I Analogs from Time- and Energy-Resolved Surface-Induced Dissociation Studies. Int. J. Mass Spectrom. 2004, 234(1/3), 89–99.

    Article  CAS  Google Scholar 

  24. Harrison, A. G.; Yalcin, T. Proton Mobility in Protonated Amino Acids and Peptides. Int. J. Mass Spectrom. 1997, 165, 339–347.

    Article  Google Scholar 

  25. Johnson, R. S.; Krylov, D.; Walsh, K. A. Proton Mobility within Electrosprayed Peptide Ions. J. Mass Spectrom. 1995, 30(2), 386–387.

    Article  CAS  Google Scholar 

  26. Mueller, D. R.; Eckersley, M.; Richter, W. J. Hydrogen Transfer-Reactions in the Formation of Y + 2 Sequence Ions from Protonated Peptides. Org. Mass Spectrom. 1988, 23(3), 217–222.

    Article  CAS  Google Scholar 

  27. Tsang, C. W.; Harrison, A. G. Chemical Ionization of Amino-Acids. J. Am. Chem. Soc. 1976, 98(6), 1301–1308.

    Article  CAS  Google Scholar 

  28. Black, G., Daily, J., Didier, B., Elsethagen, T., Feller, D., Gracio, D., Hackler, M., Havre, S., Jones, D., Jurrus, E., Keller, T., Lansing, C., Matsumoto, S., Palmer, B., Peterson, M., Schuchardt, K., Stephan, E., Sun, L., Swanson, K., Taylor, H., Thomas, G., Vorpagel, E., Windus, T., Winters, C. ECCE, a Problem Solving Environment for Computational Chemistry, Software Version 4.0.2; Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA. 2006.

    Google Scholar 

  29. Kendall, R.; Apra, E.; Bernholdt, D.; Bylaska, E.; Dupuis, M.; Fann, G.; Harrison, R.; Ju, J.; Nichols, J.; Nieplocha, J.; Straatsma, T.; Windus, T.; Wong, A. High Performance Computational Chemistry: An Overview of NWChem a Distributed Parallel Application. Comput. Phys. Commun. 2000, 128(1/2), 260–283.

    Article  CAS  Google Scholar 

  30. Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An All Atom Force-Field for Simulations of Proteins and Nucleic-Acids. J. Comput. Chem. 1986, 7(2), 230–252.

    Article  CAS  Google Scholar 

  31. Hunter, E. P. L.; Lias, S. G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27(3), 413–656.

    Article  CAS  Google Scholar 

  32. Rakov, V. S.; Denisov, E. V.; Futrell, J. H.; Ridge, D. P. Surface Induced Dissociation of Chromium Hexacarbonyl Ion Fluorinated Alkanethiolate Surface in Ion Cyclotron Resonance Mass Spectrometer: Studies of Energetics of the Process Using Recursive Internal Energy Distribution Search Method. Int. J. Mass Spectrom. 2002, 213(1), 25–44.

    Article  CAS  Google Scholar 

  33. Laskin, J.; Denisov, E.; Futrell, J. Comparative Study of Collision-Induced and Surface-Induced Dissociation. 2: Fragmentation of Small Alanine-Containing Peptides in FT-ICR MS. J. Phys. Chem. B 2001, 105(9), 1895–1900.

    Article  CAS  Google Scholar 

  34. Laskin, J.; Denisov, E.; Futrell, J. A Comparative Study of Collision-Induced and Surface-Iinduced Dissociation. 1: Fragmentation of Protonated Dialanine. J. Am. Chem. Soc. 2000, 122(40), 9703–9714.

    Article  CAS  Google Scholar 

  35. Laskin, J.; Denisov, E.; Futrell, J. H. Fragmentation Energetics of Small Peptides from Multiple-Collision Activation and Surface-Induced Dissociation in FT-ICR MS. Int. J. Mass Spectrom. 2002, 219(1), 189–201.

    Article  CAS  Google Scholar 

  36. Paizs, B.; Suhai, S. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides. 1: Mechanism of Amide Bond Cleavage. J. Am. Soc. Mass Spectrom. 2004, 15(1), 103–113.

    Article  CAS  Google Scholar 

  37. Henry, B.; Tekely, P.; Delpuech, J. J. pH and pK Determinations by High-Resolution Solid-State C-13 NMR: Acid-Base and Tautomeric Equilibria of Lyophilized L-Histidine. J. Am. Chem. Soc. 2002, 124(9), 2025–2034.

    Article  CAS  Google Scholar 

  38. Ivanov, I.; Klein, M. L. Deprotonation of a Histidine Residue in Aqueous Solution Using Constrained ab Initio Molecular Dynamics. J. Am. Chem. Soc. 2002, 124(45), 13380–13381.

    Article  CAS  Google Scholar 

  39. Huang, Y.; Triscari, J. M.; Tseng, G. C.; Pasa-Tolic, L.; Lipton, M. S.; Smith, R. D.; Wysocki, V. H. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns. Anal. Chem. 2005, 77(18), 5800–5813.

    Article  CAS  Google Scholar 

  40. Breci, L. A.; Tabb, D. L.; Yates, J. R. III; Wysocki, V. H. Cleavage N-terminal to Proline: Analysis of a Database of Peptide Tandem Mass Spectra. Anal. Chem. 2003, 75(9), 1963–1971.

    Article  CAS  Google Scholar 

  41. Huang, Y.; Triscari, J.; Pasa-Tolic, L.; Anderson, G.; Lipton, M.; Smith, R.; Wysocki, V. Dissociation Behavior of Doubly-Charged Tryptic Peptides: Correlation of Gas-Phase Cleavage Abundance with Ramachandran Plots. J Am. Chem. Soc. 2004, 126(10), 3034–3035.

    Article  CAS  Google Scholar 

  42. Bouchoux, G.; Salpin, J. Y. Gas-Phase Basicity of Glycine, Alanine, Proline, Serine, Lysine, Histidine, and Some of Their Peptides by the Thermokinetic Method. Eur. J. Mass Spectrom. 2003, 9(4), 391–402.

    Article  CAS  Google Scholar 

  43. Tsaprailis, G.; Nair, H.; Zhong, W.; Kuppannan, K.; Futrell, J. H.; Wysocki, V. H. A Mechanistic Investigation of the Enhanced Cleavage at Histidine in the Gas-Phase Dissociation of Protonated Peptides. Anal. Chem. 2004, 76(7), 2083–2094.

    Article  CAS  Google Scholar 

  44. Craig, R.; Cortens, J. C.; Fenyo, D.; Beavis, R. C. Using Annotated Peptide Mass Spectrum Libraries for Protein Identification. J. Proteome Res. 2006, 5(8), 1843–1849.

    Article  CAS  Google Scholar 

  45. Frewen, B. E.; Merrihew, G. E.; Wu, C. C.; Noble, W. S.; MacCoss, M. J. Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries. Anal. Chem. 2006, 78(16), 5678–5684.

    Article  CAS  Google Scholar 

  46. Lam, H.; Deutsch, E.; Eddes, J. S.; Eng, J. K.; King, N.; Stein, S.; Aebersold, R. Development and Validation of a Spectral Library Searching Method for Human Peptide Identification from Tandem Mass Spectrometry. Mol. Cell. Proteom. 2006, 5(10), S361-S361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Cannon.

Additional information

Published online June 20, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, W.R., Taasevigen, D., Baxter, D.J. et al. Evaluation of the influence of amino acid composition on the propensity for collision-induced dissociation of model peptides using molecular dynamics simulations. J Am Soc Mass Spectrom 18, 1625–1637 (2007). https://doi.org/10.1016/j.jasms.2007.06.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2007.06.005

Keywords

Navigation