Skip to main content
Log in

Gas-phase dissociation pathways of multiply charged peptide clusters

  • Focus: Ion Activation
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Numerous studies of cluster formation and dissociation have been conducted to determine properties of matter in the transition from the condensed phase to the gas phase using materials as diverse as atomic nuclei, noble gasses, metal clusters, and amino acids. Here, electrospray ionization is used to extend the study of cluster dissociation to peptides including leucine enkephalin with 7–19 monomer units and 2–5 protons, and somatostatin with 5 monomer units and 4 protons under conditions where its intramolecular disulfide bond is either oxidized or reduced. Evaporation of neutral monomers and charge separation by cluster fission are the competing dissociation pathways of both peptides. The dominant fission product for all leucine enkephalin clusters studied is a proton-bound dimer, presumably due to the high gas-phase stability of this species. The branching ratio of the fission and evaporation processes for leucine enkephalin clusters appears to be determined by the value of z 2/n for the cluster where z is the charge and n the number of monomer units in the cluster. Clusters with low and high values of z 2/n dissociate primarily by evaporation and cluster fission respectively, with a sharp transition between dissociation primarily by evaporation and primarily by fission measured at a z 2/n value of ∼0.5. The dependence of the dissociation pathway of a cluster on z 2/n is similar to the dissociation of atomic nuclei and multiply charged metal clusters indicating that leucine enkephalin peptide clusters exist in a state that is more disordered, and possibly fluid, rather than highly structured in the dissociative transition state. The branching ratio, but not the dissociation pathway of [somatostatin5+4H]4+ is altered by the reduction of its internal disulfide bond indicating that monomer conformational flexibility plays a role in peptide cluster dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stace, A. J. Metal Ion Solvation in the Gas Phase: The Quest for Higher Oxidation States. J. Phys. Chem. A 2002, 106, 7993–8005.

    Article  CAS  Google Scholar 

  2. Taflin, D. C.; Ward, T. L.; Davis, E. J. Electrified Droplet Fission and the Rayleigh Limit. Langmuir 1989, 5, 376–384.

    Article  CAS  Google Scholar 

  3. Grimm, R. L.; Beauchamp, J. L. Evaporation and Discharge Dynamics of Highly Charged Droplets of Heptane, Octane, and p-Xylene Generated by Electrospray Ionization. Anal. Chem. 2002, 74, 6291–6297.

    Article  CAS  Google Scholar 

  4. Sattler, K.; Muhlbach, J.; Echt, O.; Pfau, P.; Recknagel, E. Evidence for Coulomb Explosion of Doubly Charged Microclusters. Phys. Rev. Lett. 1981, 47, 160–163.

    Article  CAS  Google Scholar 

  5. Saunders, W. A. Fission and Liquid-Drop Behavior of Charged Gold Clusters. Phys. Rev. Lett. 1990, 64, 3046–3049.

    Article  CAS  Google Scholar 

  6. Saunders, W. A. Metal-Cluster Fission and the Liquid-Drop Model. Phys. Rev. A 1992, 46, 7028–7041.

    Article  Google Scholar 

  7. Ziegler, J.; Dietrich, G.; Kruckeberg, S.; Lutzenkirchen, K.; Schweikhard, L.; Walther, C. Multicollision-Induced Dissociation of Multiply Charged Gold Clusters, Au-n(2+), n = 7–35, and Au-n(3+), n = 19–35. Int. J. Mass Spectrom. 2000, 202, 47–54.

    Article  CAS  Google Scholar 

  8. Kruckeberg, S.; Schweikhard, L.; Dietrich, G.; Lutzenkirchen, K.; Walther, C.; Ziegler, J. Decay Pathway Determination of Even-Size Dicationic Silver Clusters: Ag-16(2+) and Ag-18(2+) Revisited by Pre-Precursor Selection and Sequential Decay. Chem. Phys. 2000, 262, 105–113.

    Article  CAS  Google Scholar 

  9. Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P. Ion-Molecule Clusters Involving Doubly Charged Metal-Ions (M2+). Int. J. Mass Spectrom. Ion Processes 1990, 102, 251–267.

    Article  CAS  Google Scholar 

  10. Rodriguez-Cruz, S. E.; Jockusch, R. A.; Williams, E. R. Hydration Energies of Divalent Metal Ions, Ca2+(H2O)(n) (n = 5–7) and Ni2+(H2O)(n) (n = 6–8), obtained by blackbody infrared radiative dissociation. J. Am. Chem. Soc. 1998, 120, 5842–5843.

    Article  CAS  Google Scholar 

  11. Walker, N. R.; Wright, R. R.; Barran, P. E.; Cox, H.; Stace, A. J. Unexpected stability of Cu·Ar (2+), Ag·Ar (2+), Au·Ar (2+), and their larger clusters. J. Chem. Phys. 2001, 114, 5562–5567.

    Article  CAS  Google Scholar 

  12. Ditmire, T.; Tisch, J. W. G.; Springate, E.; Mason, M. B.; Hay, N.; Marangos, J. P.; Hutchinson, M. H. R. High Energy Ion Explosion of Atomic Clusters: Transition from Molecular to Plasma Behavior. Phys. Rev. Lett. 1997, 78, 2732–2735.

    Article  CAS  Google Scholar 

  13. Kumarappan, V.; Krishnamurthy, M.; Mathur, D. Asymmetric High-Energy Ion Emission from Argon Clusters in Intense Laser Fields. Phys. Rev. Lett. 2001, 87, article no. 085005.

    Google Scholar 

  14. Snyder, E. M.; Wei, S.; Purnell, J.; Buzza, S. A.; Castleman, A. W. Femtosecond Laser-Induced Coulomb Explosion of Ammonia Clusters. Chem. Phys. Lett. 1996, 248, 1–7.

    Article  CAS  Google Scholar 

  15. Card, D. A.; Wisniewski, E. S.; Folmer, D. E.; Castleman, A. W. Dynamics of Coulomb Explosion and Kinetic Energy Release in Clusters of Heterocyclic Compounds. J. Chem. Phys. 2002, 116, 3554–3567.

    Article  CAS  Google Scholar 

  16. Pruvost, L.; Serre, I.; Duong, H. T.; Jortner, J. Expansion and Cooling of a Bright Rubidium Three-Dimensional Optical Molasses. Phys. Rev. A 2000, 6105, 053408.

    Google Scholar 

  17. Zhan, D. L.; Rosell, J.; Fenn, J. B. Solvation Studies of Electrospray Ions—Method and Early Results. J. Am. Soc. Mass Spectrom. 1998, 9, 1241–1247.

    Article  CAS  Google Scholar 

  18. Zhang, D. X.; Wu, L. M.; Koch, K. J.; Cooks, R. G. Arginine Clusters Generated by Electrospray Ionization and Identified by Tandem Mass Spectrometry. Eur. Mass Spectrom. 1999, 5, 353–361.

    Article  CAS  Google Scholar 

  19. Lee, S. W.; Beauchamp, J. L. Fourier Transform Ion Cyclotron Resonance Study of Multiply Charged Aggregates of Small Singly Charged Peptides Formed by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 1999, 10, 347–351.

    Article  CAS  Google Scholar 

  20. Julian, R. R.; Hodyss, R.; Kinnear, B.; Jarrold, M. F.; Beauchamp, J. L. Nanocrystalline Aggregation of Serine Detected by Electrospray Ionization Mass Spectrometry: Origin of the Stable Homochiral Gas-Phase Serine Octamer. J. Phys. Chem. B 2002, 106, 1219–1228.

    Article  CAS  Google Scholar 

  21. Counterman, A. E.; Valentine, S. J.; Srebalus, C. A.; Henderson, S. C.; Hoaglund, C. S.; Clemmer, D. E. High-Order Structure and Dissociation of Gaseous Peptide Aggregates that are Hidden in Mass Spectra. J. Am. Soc. Mass Spectrom. 1998, 9, 743–759.

    Article  CAS  Google Scholar 

  22. Counterman, A. E.; Clemmer, D. E. Magic Number Clusters of Serine in the Gas Phase. J. Phys. Chem. B 2001, 105, 8092–8096.

    Article  CAS  Google Scholar 

  23. Counterman, A. E.; Hilderbrand, A. E.; Barnes, C. A. S.; Clemmer, D. E. Formation of Peptide Aggregates During ESI: Size, Charge, Composition, and Contributions to Noise. J. Am. Soc. Mass Spectrom. 2001, 12, 1020–1035.

    Article  CAS  Google Scholar 

  24. Guevremont, R.; Purves, R. W. High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry: An Investigation of Leucine Enkephalin Ions Produced by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 1999, 10, 492–501.

    Article  CAS  Google Scholar 

  25. Zhang, D. X.; Koch, K. J.; Tao, A.; Cooks, R. G. Clustering of Amino Acids in the Gas Phase by Electrospray Ionization Mass Spectrometry. Proceedings of the 48th ASMS Conference on MS and Allied Topics; Long Beach, CA, June, 2000.

  26. Koch, K. J.; Gozzo, F. C.; Zhang, D. X.; Eberlin, M. N.; Cooks, R. G. Serine Octamer Metaclusters: Formation, Structure Elucidation, and Implications for Homochiral Polymerization. Chem. Commun. 2001, 1854–1855.

  27. Cooks, R. G.; Zhang, D. X.; Koch, K. J.; Gozzo, F. C.; Eberlin, M. N. Chiroselective Self-Directed Octamerization of Serine: Implications for Homochirogenesis. Anal. Chem. 2001, 73, 3646–3655.

    Article  CAS  Google Scholar 

  28. Koch, K. J.; Gozzo, F. C.; Nanita, S. C.; Takats, Z.; Eberlin, M. N.; Cooks, R. G. Chiral Transmission Between Amino Acids: Chirally Selective Amino Acid Substitution in the Serine Octamer as a Possible Step in Homochirogenesis. Angew. Chem. Int. Ed. 2002, 41, 1721–1724.

    Article  CAS  Google Scholar 

  29. Light-Wahl, K. J.; Schwartz, B. L.; Smith, R. D. Observation of the Noncovalent Quaternary Associations of Proteins By Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 1994, 116, 5271–5278.

    Article  CAS  Google Scholar 

  30. Schwartz, B. L.; Bruce, J. E.; Anderson, G. A.; Hofstadler, S. A.; Rockwood, A. L.; Smith, R. D.; Chilkoti, A.; Stayton, P. S. Dissociation of Tetrameric Ions of Noncovalent Streptavidin Complexes Formed by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 1995, 6, 459–465.

    Article  CAS  Google Scholar 

  31. Fitzgerald, M. C.; Chernushevich, I.; Standing, K. G.; Whitman, C. P.; Kent, S. B. H. Probing the Oligomeric Structure of an Enzyme by Electrospray Ionization Time-of-Flight Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 6851–6856.

    Article  CAS  Google Scholar 

  32. Zhang, Z. G.; Krutchinsky, A.; Endicott, S.; Realini, C.; Rechsteiner, M.; Standing, K. G. Proteasome Activator 11S REG or PA28: Recombinant REG αREG β Hetero-Oligomers are Heptamers. Biochemistry U.S.A. 1999, 38, 5651–5658.

    CAS  Google Scholar 

  33. Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Thermal Decomposition of a Gaseous Multiprotein Complex Studied by Blackbody Infrared Radiative Dissociation. Investigating the Origin of the Asymmetric Dissociation Behavior. Anal. Chem. 2001, 73, 4647–4661.

    Article  CAS  Google Scholar 

  34. Kitova, E. N.; Bundle, D. R.; Klassen, J. S. Thermal Dissociation of Protein-Oligosaccharide Complexes in the Gas Phase: Mapping the Intrinsic Intermolecular Interactions. J. Am. Chem. Soc. 2002, 124, 5902–5913.

    Article  CAS  Google Scholar 

  35. Hanson, C. L.; Fucini, P.; Ilag, L. L.; Nierhaus, K. H.; Robinson, C. V. Dissociation of Intact Escherichia coli Ribosomes in a Mass Spectrometer—Evidence for Conformational Change in a Ribosome Elongation Factor g Complex. J. Biol. Chem. 2003, 278, 1259–1267.

    Article  CAS  Google Scholar 

  36. Jurchen, J. C.; Williams, E. R. Origin of Asymmetric Charge Partitioning in the Dissociation of Gas-Phase Protein Homodimers. J. Am. Chem. Soc. 2003, 125, 2817–2826.

    Article  CAS  Google Scholar 

  37. Brechignac, C.; Cahuzac, P.; Carlier, F.; Defrutos, M. Asymmetric Fission of Nan++ Around the Critical Size of Stability. Phys. Rev. Lett. 1990, 64, 2893–2896.

    Article  CAS  Google Scholar 

  38. Brechignac, C.; Cahuzac, P.; Carlier, F.; Defrutos, M.; Leygnier, J.; Roux, J. P. Coulombic Fission and Evaporation of Antimony Cluster Ions. J. Chem. Phys. 1995, 102, 763–769.

    Article  CAS  Google Scholar 

  39. Schnier, P. D.; Price, W. D.; Strittmatter, E. F.; Williams, E. R. Dissociation Energetics and Mechanisms of Leucine Enkephalin (M+H)(+) and (2M+X)(+) Ions (X = H, Li, Na, K, and Rb) Measured by Blackbody Infrared Radiative Dissociation. J. Am. Soc. Mass Spectrom. 1997, 8, 771–780.

    Article  CAS  Google Scholar 

  40. Kunimura, M.; Sakamoto, S.; Yamaguchi, K. Alkali Metal-Mediated Proline Aggregation in Solution Observed by Coldspray Ionization Mass Spectrometry. Org. Lett. 2002, 4, 347–350.

    Article  CAS  Google Scholar 

  41. Last, I.; Levy, Y.; Jortner, J. Beyond the Rayleigh Instability Limit for Multicharged Finite Systems: From Fission to Coulomb Explosion. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9107–9112.

    Article  CAS  Google Scholar 

  42. Bohr, N.; Wheeler, J. A. The Mechanism of Nuclear Fission. Phys. Rev. 1939, 56, 426–450.

    Article  CAS  Google Scholar 

  43. Halpern, I. Nuclear Fission. Annu. Rev. Nucl. Sci. 1959, 9, 245–341.

    Article  CAS  Google Scholar 

  44. Versluis, C.; van der Staaij, A.; Stokvis, E.; Heck, A. J. R.; de Craene, B. Metastable Ion Formation and Disparate Charge Separation in the Gas-Phase Dissection of Protein Assemblies Studied by Orthogonal Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 329–336.

    Article  CAS  Google Scholar 

  45. Rostom, A. A.; Sunde, M.; Richardson, S. J.; Schreiber, G.; Jarvis, S.; Bateman, R.; Dobson, C. M.; Robinson, C. V. Dissection of Multi-Protein Complexes Using Mass Spectrometry: Subunit Interactions in Transthyretin and Retinol-Binding Protein Complexes. Proteins 1998, 3–11.

  46. Kogan, A.; Ustyuzhanin, P.; Reuben, B. G.; Lifshitz, C. Hydtrogen/Deuterium Exchange of Monomers and Dimers of Leucine Enkephalin. Int. J. Mass Spectrom. 2002, 213, 1–4.

    Article  CAS  Google Scholar 

  47. Kaleta, D. T.; Jarrold, M. F. Noncovalent Interactions Between Unsolvated Peptides. J. Phys. Chem. A 2002, 106, 9655–9664.

    Article  CAS  Google Scholar 

  48. Schalley, C. A.; Weis, P. Unusually Stable Magic Number Clusters of Serine with a Surprising Preference for Homochirality. Int. J. Mass Spectrom. 2002, 221, 9–19.

    Article  CAS  Google Scholar 

  49. Anders, L. R.; Beauchamp, J. L.; Dunbar, R. C.; Baldeschwieler, J. D. Ion-Cyclotron Double Resonance. J. Chem. Phys. 1966, 45, 1062–1063.

    Article  CAS  Google Scholar 

  50. Comisarow, M. B.; Grassi, V.; Parisod, G. Fourier-Transform Ion-Cyclotron Double-Resonance. Chem. Phys. Lett. 1978, 57, 413–416.

    Article  CAS  Google Scholar 

  51. Asam, M. R.; Glish, G. L. Tandem Mass Spectrometry of Alkali Cationized Polysaccharides in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1997, 8, 987–995.

    Article  CAS  Google Scholar 

  52. Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier-Transform Mass-Spectrometry—Collision-Activated Dissociation Technique that Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta 1991, 246, 211–225.

    Article  CAS  Google Scholar 

  53. Wang, J.; Cassady, C. J. Effects of Disulfide Linkages on Gas-Phase Reactions of Small Multiply Charged Peptide Ions. Int. J. Mass Spectrom. 1999, 182/183, 233–241.

    Article  CAS  Google Scholar 

  54. Kaleta, D. T.; Jarrold, M. F. Peptide Pinwheels. J. Am. Chem. Soc. 2002, 124, 1154–1155.

    Article  CAS  Google Scholar 

  55. Lord Rayleigh, L. On the Equilibrium of Liquid Conducting Masses Charged with Electricity. Phil. Mag. 1882, 14, 184–186.

    Google Scholar 

  56. Echt, O.; Kreisle, D.; Recknagel, E.; Saenz, J. J.; Casero, R.; Soler, J. M. Dissociation Channels of Multiply Charged Vanderwaals Clusters. Phys. Rev. A 1988, 38, 3236–3248.

    Article  CAS  Google Scholar 

  57. Yannouleas, C.; Landman, U.; Brechignac, C.; Cahuzac, P.; Concina, B.; Leygnier, J. Thermal Quenching of Electronic Shells and Channel Competition in Cluster Fission. Phys. Rev. Lett. 2002, 89, 173–403

    Article  Google Scholar 

  58. Saunders, W. A. Asymmetric Fission of Nan++ around the Critical Size of Stability—Comment. Phys. Rev. Lett. 1991, 66, 840–840.

    Article  CAS  Google Scholar 

  59. Naher, U.; Bjornholm, S.; Frauendorf, S.; Garcias, F.; Guet, C. Fission of Metal Clusters. Phys. Rep. Rev. Sec. Phys. Lett. 1997, 285, 245–320.

    Google Scholar 

  60. Knight, W. D.; Clemenger, K.; Deheer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic Shell Structure and Abundances of Sodium Clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.

    Article  CAS  Google Scholar 

  61. Nakamura, M.; Ishii, Y.; Tamura, A.; Sugano, S. Shell Effects on Symmetrical Fragmentations of Alkali-Metal Clusters. Phys. Rev. A 1990, 42, 2267–2278.

    Article  CAS  Google Scholar 

  62. Kruckeberg, S.; Dietrich, C.; Lutzenkirchen, K.; Schweikhard, L.; Walther, C.; Ziegler, J. Fission Barriers of Doubly Charged Silver Clusters. Eur. Phys. J. D 1999, 9, 145–148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan R. Williams.

Additional information

Published online October 20, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurchen, J.C., Garcia, D.E. & Williams, E.R. Gas-phase dissociation pathways of multiply charged peptide clusters. J Am Soc Mass Spectrom 14, 1373–1386 (2003). https://doi.org/10.1016/j.jasms.2003.07.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2003.07.003

Keywords

Navigation