Skip to main content
Log in

Conformer-dependent proton-transfer reactions of ubiquitin ions

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The conformations of ubiquitin ions before and after being exposed to proton transfer reagents have been studied by using ion mobility/mass spectrometry techniques. Ions were produced by electrospray ionization and exposed to acetone, acetophenone, n-butylamine, and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene. Under the conditions employed, the +4 to +13 charge states were formed and a variety of conformations, which we have characterized as compact, partially folded, and elongated, have been observed. The low charge state ions have cross sections that are similar to those calculated for the crystal conformation. High charge states favor unfolded conformations. The ion mobility distributions recorded after ions have been exposed to each base show that the lowest charge state that is formed during proton-transfer reactions favors a compact conformation. More open conformations are observed for the higher charge states that remain after reaction. The results show that for a given charge state, the apparent gas-phase acidities of the different conformations are ordered as compact < partially folded < elongated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitehouse, C. M.; Dreyer, R. N.; Yamashuta, M.; Fenn, J. B. Anal. Chem. 1985, 57, 675–679.

    Article  CAS  Google Scholar 

  2. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64–71.

    Article  CAS  Google Scholar 

  3. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2229.

    Article  Google Scholar 

  4. Karas, M.; Bahr, U.; Giessman, U. Mass Spectrom. Rev. 1991, 10, 335–357.

    Article  CAS  Google Scholar 

  5. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A-1202A.

    Article  CAS  Google Scholar 

  6. Winger, B. E.; Light-Wahl, J. J., Rockwood, A. L., Smith, R. D. J. Am. Chem. Soc. 1992, 114 5897–5898.

    Article  CAS  Google Scholar 

  7. Suckau D.; Shi Y.; Beu S. C.; Senko M. W.; Quinn J. P.; Wampler F. M. III; McLafferty F. W. Proc. Natl. Acad. Sci. USA 1993, 90, 790–793.

    Article  CAS  Google Scholar 

  8. Wood T. D.; Chorush R. A.; Wampler F. M.; III Little D. P.; O’Connor P. B.; McLafferty F. W. Proc. Natl. Acad. Sci. USA 1995, 92, 2451–2454.

    Article  CAS  Google Scholar 

  9. Cassady C. J.; Carr S. R. J. Mass Spectrom. 1996, 31, 247–254.

    Article  CAS  Google Scholar 

  10. Valentine, S. J.; Clemmer, D. E. J. Am. Chem. Soc. 1997, 119, 3558–3566.

    Article  CAS  Google Scholar 

  11. Ogorzalek Loo R. R.; Smith R. D. J. Am. Soc. Mass Spectrom. 1994, 5, 207–220.

    Article  Google Scholar 

  12. Ogorzalek Loo R. R.; Winger B. E.; Smith R. D. J. Am. Soc. Mass Spectrom. 1994, 5, 1064–1071.

    Article  Google Scholar 

  13. Cassady C. J.; Wronka J.; Kruppa G. H.; Laukien F. H. Rapid Commun. Mass Spectrom. 1994, 8, 394–400.

    Article  CAS  Google Scholar 

  14. Zhang X.; Cassady C. J. J. Am. Soc. Mass Spectrom. 1996, 7, 1211–1218.

    Article  CAS  Google Scholar 

  15. Schnier P. F.; Gross D. S.; Williams E. R. J. Am. Chem. Soc. 1995, 117, 6747–6752.

    Article  CAS  Google Scholar 

  16. Gross D. S.; Schnier P. D.; Rodriguez-Cruz S. E.; Fagerquist C. K.; Williams E. R. Proc. Natl. Acad. Sci. USA 1996, 93, 3143–3148.

    Article  CAS  Google Scholar 

  17. Williams E. R. J. Mass Spectrom. 1996, 31, 831–842.

    Article  CAS  Google Scholar 

  18. Covey T. R.; Douglas D. J. J. Am. Soc. Mass Spectrom. 1993, 4, 616–623.

    Article  CAS  Google Scholar 

  19. Douglas D. J. J. Am. Soc. Mass Spectrom. 1994, 5, 17–18.

    Article  CAS  Google Scholar 

  20. Collings B. A.; Douglas D. J. J. Am. Chem. Soc. 1996, 118, 4488–4489.

    Article  CAS  Google Scholar 

  21. von Helden, G.; Wyttenbach, T.; Bowers, M. T. Science 1995, 267, 1483–1485.

    Article  Google Scholar 

  22. Wyttenbach, T.; von Helden, G.; Bowers, M. T. J. Am. Chem. Soc. 1996, 118, 8355–8364.

    Article  CAS  Google Scholar 

  23. Clemmer D. E.; Hudgins R. R.; Jarrold M. F. J. Am. Chem. Soc. 1995, 117, 10141–10142.

    Article  CAS  Google Scholar 

  24. Shelimov K.; Jarrold M. F. J. Am. Chem. Soc. 1996, 118, 10313–10314.

    Article  CAS  Google Scholar 

  25. Shelimov K. B.; Clemmer D. E.; Hudgins R. R.; Jarrold M. F. J. Am. Chem. Soc. 1997, 119, 2240–2248.

    Article  CAS  Google Scholar 

  26. Shelimov K. B.; Jarrold M. F. J. Am. Chem. Soc. 1997, 119, 2987–2994.

    Article  CAS  Google Scholar 

  27. Valentine S. J.; Anderson J.; Ellington A. E.; Clemmer D. E. J. Phys. Chem. 1997, 101, 3891–3900.

    CAS  Google Scholar 

  28. Sullivan P. A.; Axelsson J.; Altmann S.; Quist A. P.; Sunqvist B. U. R.; Reimann C. T. J. Am. Chem. Soc. Mass Spectrom. 1996, 7, 329.

    Article  CAS  Google Scholar 

  29. Hagen, D. F. Anal. Chem. 1979, 51, 870–874.

    Article  CAS  Google Scholar 

  30. St. Louis, R. H.; Hill, H. H. Crit. Rev. Anal. Chem. 1990, 21, 321–355.

    Article  CAS  Google Scholar 

  31. von Helden, G.; Hsu, M. T.; Kemper, P. R.; Bowers, M. T. J. Chem. Phys. 1991, 95, 3835–3837.

    Article  Google Scholar 

  32. Jarrold, M. F.; Constant, V. A. Phys. Rev. Lett. 1992, 67, 2994–2997.

    Article  Google Scholar 

  33. Clemmer, D. E.; Jarrold, M. F. J. Am. Chem. Soc. 1995, 117, 8841–8850.

    Article  CAS  Google Scholar 

  34. Gross D. S.; Williams E. R. J. Am. Chem. Soc. 1995, 117, 883–890.

    Article  CAS  Google Scholar 

  35. Gross D. S.; Rodriguez-Cruz S. E.; Bock S.; Williams E. R. J. Phys. Chem. 1995, 99, 4034–4038.

    Article  CAS  Google Scholar 

  36. Mason E. A.; McDaniel E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988.

    Book  Google Scholar 

  37. The crystal coordinates for human ubiquitin (having the same sequence as bovine ubiquitin) were used for this calculation. The structure was determined by Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Biol. 1987, 194, 531–544.

    Article  CAS  Google Scholar 

  38. Insight II, BIOSYM/MSI, San Diego, CA, 1995.

  39. Recently it has been shown that when scattering trajectories are rigorously included, the calculated collision cross section can increase by as much as ∼20%; Shvartsburg, A.; Jarrold, M. F. Chem. Phys. Lett. 1996, 261, 86–91.

    Article  CAS  Google Scholar 

  40. Lias, S. G. ; Liebman, J. F. ; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13.

  41. Gas-phase basicity values for all bases used in this study are taken from ref 21 unless otherwise noted.

  42. Decouzon M.; Gal J. F.; Maria P. C.; Raczynska E. D. Rapid Commun. Mass Spectrom. 1993, 7, 599–602.

    Article  CAS  Google Scholar 

  43. Liu, Y. ; Valentine, S. J. ; Clemmer, D. E. , unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentine, S.J., Counterman, A.E. & Clemmer, D.E. Conformer-dependent proton-transfer reactions of ubiquitin ions. J Am Soc Mass Spectrom 8, 954–961 (1997). https://doi.org/10.1016/S1044-0305(97)00085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(97)00085-8

Keywords

Navigation