Skip to main content

Advertisement

Log in

Proposing a framework for monitoring demographic parameters in local cetacean populations: the case of short-finned pilot whales in Madeira

  • MOVEMENT AND SITE FIDELITY
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Individuals from cetacean populations regularly using inshore waters can be more vulnerable to anthropogenic pressures than those living in offshore areas. The monitoring of Good Environmental Status within the European Marine Strategy Framework Directive (MSFD) requires assessing demographic parameters of these local populations. Therefore, a two-step framework was developed for this monitoring and applied to a long-term photo-identification database of short-finned pilot whales in the inshore waters of Madeira. First, a standardized method to identify site fidelity structures based on K-means analysis was used to determine the local population, i.e., individuals with higher site fidelity. Then, demographic parameters were estimated over 15 years using a robust design model. Finally, the effect of increasing whale watching boats as a potential threat was tested. The results revealed no temporary emigration, showing that the site fidelity methodology could accurately identify the local population. Adult survival rates were high and abundance estimates were stable. Therefore, these results should be used as a baseline for future MSFD cycles. No negative effect of whale watching was found on demographic parameters for adult individuals. However, young animals, which could be more vulnerable to local pressures, were not fully included in the analysis, and potential effects on reproduction output were not studied. Therefore, an adverse effect of whale watching on the local population cannot be ruled out. This monitoring framework should be applied to other species and study areas to confirm its wide application to help management decisions reaching better conservation status for cetacean species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. A1
Fig. A2
Fig. A3
Fig. A4

Similar content being viewed by others

References

  • Alves F, Quérouil S, Dinis A, Nicolau C, Ribeiro C, Freitas L, Kaufmann M, Fortuna C (2013) Population structure of short-finned pilot whales in the oceanic archipelago of Madeira based on photo-identification and genetic analyses: implications for conservation. Aquat Conserv Mar Freshw Ecosyst 23:758–776. https://doi.org/10.1002/aqc.2332

    Article  Google Scholar 

  • Alves F, Dinis A, Nicolau C, Ribeiro C, Kaufmann M, Fortuna C, Freitas L (2015) Survival and abundance of short-finned pilot whales in the archipelago of Madeira, NE Atlantic. Mar Mammal Sci 31:106–121. https://doi.org/10.1111/mms.12137

    Article  Google Scholar 

  • Alves F, Alessandrini A, Servidio A, Mendonça AS, Hartman KL, Prieto R, Berrow S, Magalhães S, Steiner L, Santos R, Ferreira R, Pérez JM, Ritter F, Dinis A, Martín V, Silva M, Aguilar de Soto N (2018) Complex biogeographical patterns support an ecological connectivity network of a large marine predator in the north-east Atlantic. Divers Distrib. https://doi.org/10.1111/ddi.12848

    Article  Google Scholar 

  • Alves F, Dromby M, Baptista V, Ferreira R, Correia AM, Weyn M, Valente R, Froufe E, Rosso M, Sousa-Pinto I, Dinis A, Dias E, Teodósio MA (2020) Ecophysiological traits of highly mobile large marine predators inferred from nucleic acid derived indices. Sci Rep 10:4752. https://doi.org/10.1038/s41598-020-61769-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins S, Cantor M, Pillay N, Cliff G, Keith M, Parra G (2016) Net loss of endangered humpback dolphins: integrating residency, site fidelity, and bycatch in shark nets. Mar Ecol Prog Ser 555:249–260. https://doi.org/10.3354/meps11835

    Article  Google Scholar 

  • Baker CS, Steel D, Calambokidis J et al (2013) Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar Ecol Prog Ser 494:291–306. https://doi.org/10.3354/meps10508

    Article  Google Scholar 

  • Ballance LT (1990) Residence patterns, group organization and surface association of bottlenose dolphins in Kino Bay, Gulf of California, Mexico. In: Leatherwood S, Reeves RR (eds) The bottlenose dolphin. Academic Press Inc, San Diego, pp 267–283

    Chapter  Google Scholar 

  • Baş AA, Erdoğan M, Morris N, Yeoman K, Humphrey O, Gaggioli E, Roland C (2016) Seasonal encounter rates and residency patterns of an unstudied population of bottlenose dolphin (Tursiops truncatus) in the northwestern Levantine Sea, Turkey. HYLA-Herpetološki Bilt 2016(1):1–13

    Google Scholar 

  • Baş AA, Öztürk B, Öztürk AA (2019) Encounter rate, residency pattern and site fidelity of bottlenose dolphins (Tursiops truncatus) within the Istanbul Strait, Turkey. J Mar Biol Assoc UK 99:1009–1016. https://doi.org/10.1017/S0025315418000577

    Article  Google Scholar 

  • Bejder L, Samuels A, Whitehead H, Gales N, Mann J, Connor R, Heithaus M, Watson-Capps J, Flaherty C, Krützen M (2006) Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv Biol 20:1791–1798. https://doi.org/10.1111/j.1523-1739.2006.00540.x

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  • Bolaños-Jiménez J, Morteo E, Delfín-Alfonso CA, Fruet PF, Secchi ER, Bello-Pineda J (2021) Population dynamics reveal a core community of the common bottlenose dolphin (Tursiops truncatus) in open waters of the south-western Gulf of Mexico. Front Mar Sci 8:1–14. https://doi.org/10.3389/fmars.2021.753484

    Article  Google Scholar 

  • Bröker KCA, Gailey G, Tyurneva OY, Yakovlev YM, Sychenko O, Dupont JM, Vertyankin VV, Shevtsov E, Drozdov KA (2020) Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia. PLoS ONE 15:e0236649. https://doi.org/10.1371/journal.pone.0236649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlucci R, Baş AA, Liebig P, Renò V, Santacesaria FC, Bellomo S, Fanizza C, Maglietta R, Cipriano G (2020) Residency patterns and site fidelity of Grampus griseus (Cuvier, 1812) in the Gulf of Taranto (Northern Ionian Sea, Central-Eastern Mediterranean Sea). Mammal Res 65:445–455. https://doi.org/10.1007/s13364-020-00485-z

    Article  Google Scholar 

  • Chabanne DBH, Finn H, Bejder L (2017) Identifying the relevant local population for environmental impact assessments of mobile marine fauna. Front Mar Sci 4:1–17. https://doi.org/10.3389/fmars.2017.00148

    Article  Google Scholar 

  • Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009) U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography (cop) 32:1071–1074. https://doi.org/10.1111/j.1600-0587.2009.05968.x

    Article  Google Scholar 

  • Cobarrubia-Russo S, Barreto G, Quintero-Torres E, Molero-Lizarraga A, Wang X (2019) Occurrence, abundance, range, and residence patterns of Tursiops truncatus on the coast of Aragua, Venezuela. Mammal Res 64:289–297. https://doi.org/10.1007/s13364-018-0401-1

    Article  Google Scholar 

  • Cooch EG, White GC (eds) (2019) Using program MARK: a gentle introduction, 19th edn. http://www.phidot.org/software/mark/docs/book/. Accessed 4 Feb 2021

  • Crain CM, Halpern BS, Beck MW, Kappel CV (2009) Understanding and managing human threats to the coastal marine environment. Ann N Y Acad Sci 1162:39–62. https://doi.org/10.1111/j.1749-6632.2009.04496.x

    Article  PubMed  Google Scholar 

  • Cunha I, Freitas L, Alves F, Dinis A, Ribeiro C, Nicolau C, Ferreira R, Gonçalves JA, Formigo N (2017) Marine traffic and potential impacts towards cetaceans within the Madeira EEZ. J Cetacean Res Manag 16:17–28

    Article  Google Scholar 

  • Diretiva Quadro Estratégia Marinha (2020) Parte D. Reavaliação do Estado Ambiental e Definição de Metas, subdivisão da Madeira.

  • Esteban R, Verborgh P, Freitas L (2022) Dynamics of short-finned pilot whales long-term social structure in Madeira. Mamm Biol (Special Issue) 102(4). https://doi.org/10.1007/s42991-022-00280-0

  • Estrade V, Dulau V (2020) Abundance and site fidelity of bottlenose dolphins off a remote oceanic island (Reunion Island, southwest Indian Ocean). Mar Mammal Sci 36:871–896. https://doi.org/10.1111/mms.12693

    Article  Google Scholar 

  • Fearnbach H, Durban J, Parsons K, Claridge D (2012) Photographic mark–recapture analysis of local dynamics within an open population of dolphins. Ecol Appl 22:1689–1700. https://doi.org/10.1890/12-0021.1

    Article  CAS  PubMed  Google Scholar 

  • Ferreira R (2007) Monitorização da actividade de observação de cetáceos no arquipélago da Madeira, Portugal [Monitoring of whale watching activities in the archipelago of Madeira, Portugal]. Universidade de Lisboa, Dissertação

    Google Scholar 

  • Frantzis A, Alexiadou P, Gkikopoulou KC (2014) Sperm whale occurrence, site fidelity and population structure along the Hellenic Trench (Greece, Mediterranean Sea). Aquat Conserv Mar Freshw Ecosyst 24:83–102. https://doi.org/10.1002/aqc.2435

    Article  Google Scholar 

  • Freitas L, Alves F, Ribeiro C, Dinis A, Nicolau C, Carvalho A (2014) Estudo técnico-científico de suporte à proposta de criação de áreas de operação para a actividade de whalewatching e respectiva capacidade de carga. Relatório técnico do Projecto CETACEOSMADEIRA II (LIFE07 NAT/P/000646)

  • Geldmacher J, van den Bogaard P, Hoernle K, Schmincke H-U (2000) The 40 Ar/39 Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochem Geophys Geosyst 1:1008. https://doi.org/10.1029/1999GC000018

    Article  Google Scholar 

  • Gimenez O, Choquet R (2010) Individual heterogeneity in studies on marked animals using numerical integration: capture–recapture mixed models. Ecology 91:951–957. https://doi.org/10.1890/09-1903.1

    Article  CAS  PubMed  Google Scholar 

  • Hammond PS, Francis TB, Heinemann D, Long KJ, Moore JE, Punt AE, Reeves RR, Sepúlveda M, Sigurðsson GM, Siple MC, Víkingsson G, Wade PR, Williams R, Zerbini AN (2021) Estimating the abundance of marine mammal populations. Front Mar Sci. https://doi.org/10.3389/fmars.2021.735770

    Article  Google Scholar 

  • Hartman KL, Fernandez M, Wittich A, Azevedo JMN (2015) Sex differences in residency patterns of Risso’s dolphins (Grampus griseus) in the Azores: causes and management implications. Mar Mammal Sci 31:1153–1167. https://doi.org/10.1111/mms.12209

    Article  Google Scholar 

  • Haughey R, Hunt T, Hanf D, Rankin RW, Parra GJ (2020) Photographic capture-recapture analysis reveals a large population of Indo-Pacific bottlenose dolphins (Tursiops aduncus) with low site fidelity off the North West Cape, Western Australia. Front Mar Sci 6:1–14. https://doi.org/10.3389/fmars.2019.00781

    Article  Google Scholar 

  • Heimlich-Boran JR (1993) Social organisation of the short-finned pilot whale, Globicephala macrorhynchus, with special reference to the comparative social ecology of delphinids. University of Cambridge, Cambridge

    Google Scholar 

  • Huggins RM (1989) On the statistical analysis of capture experiments. Biometrika 76:133–140. https://doi.org/10.2307/2336377

    Article  Google Scholar 

  • Hunt T, Bejder L, Allen S, Rankin R, Hanf D, Parra G (2017) Demographic characteristics of Australian humpback dolphins reveal important habitat toward the southwestern limit of their range. Endanger Species Res 32:71–88. https://doi.org/10.3354/esr00784

    Article  Google Scholar 

  • Kassambara A, Mundt F (2020) factoextra: extract and visualize the results of multivariate data analyses. R Package Version 1:7

    Google Scholar 

  • Kassambara A (2021) rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.0.

  • Kasuya T, Marsh H (1984) Life history and reproductive biology of the short-finned pilot whale, Globicephala macrorhynchus, off the Pacific Coast of Japan. Rep Int Whal Comm 259–310

  • Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar Pollut Bull 18:319–326. https://doi.org/10.1016/S0025-326X(87)80019-X

    Article  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. https://doi.org/10.2307/2937171

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology. Elsevier, Third Engl

    Google Scholar 

  • Lodi L, Maricato G (2020) Rough-toothed dolphins (Cetartiodactyla: Delphinidae) habitat use in coastal urban waters of the South-western Atlantic. J Mar Biol Assoc UK 100:471–479. https://doi.org/10.1017/S0025315420000132

    Article  Google Scholar 

  • Ludwig KE, Daly M, Levesque S, Berrow SD (2021) Survival rates and capture heterogeneity of bottlenose dolphins (Tursiops truncatus) in the Shannon estuary, Ireland. Front Mar Sci 8:1–18. https://doi.org/10.3389/fmars.2021.611219

    Article  Google Scholar 

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2021) cluster: cluster analysis basics and extensions. R Package Version 2(1):2

    Google Scholar 

  • Mahaffy SD, Baird RW, McSweeney DJ, Webster DL, Schorr GS (2015) High site fidelity, strong associations, and long-term bonds: Short-finned pilot whales off the island of Hawai‘i. Mar Mammal Sci 31:1427–1451. https://doi.org/10.1111/mms.12234

    Article  Google Scholar 

  • Mahaffy SD (2012) Site fidelity, associations and long-term bonds of short-finned pilot whales off the island of Hawai‘i. Dissertation, Portland State University

  • Manlik O, McDonald JA, Mann J, Raudino HC, Bejder L, Krützen M, Connor RC, Heithaus MR, Lacy RC, Sherwin WB (2016) The relative importance of reproduction and survival for the conservation of two dolphin populations. Ecol Evol 6:3496–3512. https://doi.org/10.1002/ece3.2130

    Article  PubMed  PubMed Central  Google Scholar 

  • McLachlan GJ, Basford KE (1987) Mixture models. Inference and applications to clustering. Marcel Dekker Inc, New York

    Google Scholar 

  • Mistic Seas II (2019) Applying a sub-regional coherent and coordinated approach to the monitoring and assessment of marine biodiversity in Macaronesia for the second cycle of the MSFD Final Technical Report - WP1- Monitoring Programs and Data gathering

  • Morteo E, Rocha-Olivares A, Morteo R (2012) Sensitivity analysis of residency and site fidelity estimations to variations in sampling effort and individual catchability. Rev Mex Biodivers 83:487–495

    Google Scholar 

  • New LF, Harwood J, Thomas L, Donovan C, Clark JS, Hastie G, Thompson PM, Cheney B, Scott-Hayward L, Lusseau D (2013) Modelling the biological significance of behavioural change in coastal bottlenose dolphins in response to disturbance. Funct Ecol 27:314–322. https://doi.org/10.1111/1365-2435.12052

    Article  Google Scholar 

  • New LF, Hall AJ, Harcourt R, Kaufman G, Parsons ECM, Pearson HC, Cosentino AM, Schick RS (2015) The modelling and assessment of whale-watching impacts. Ocean Coast Manag 115:10–16. https://doi.org/10.1016/j.ocecoaman.2015.04.006

    Article  Google Scholar 

  • Pace DS, Di Marco C, Giacomini G, Ferri S, Silvestri M, Papale E, Casoli E, Ventura D, Mingione M, Alaimo Di Loro P, Jona Lasinio G, Ardizzone G (2021) Capitoline dolphins: residency patterns and abundance estimate of Tursiops truncatus at the Tiber River Estuary (Mediterranean Sea). Biology (basel) 10:275. https://doi.org/10.3390/biology10040275

    Article  PubMed  Google Scholar 

  • Parsons ECM (2012) The negative impacts of whale-watching. J Mar Biol 2012:1–9. https://doi.org/10.1155/2012/807294

    Article  Google Scholar 

  • Passadore C, Möller L, Diaz-Aguirre F, Parra GJ (2017) High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol Evol. https://doi.org/10.1002/ece3.3674

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Alvarez MJ, Vásquez RA, Moraga R, Santos-Carvallo M, Kraft S, Sabaj V, Capella J, Gibbons J, Vilina Y, Poulin E (2018) Home sweet home: social dynamics and genetic variation of a long-term resident bottlenose dolphin population off the Chilean coast. Anim Behav 139:81–89. https://doi.org/10.1016/j.anbehav.2018.03.009

    Article  Google Scholar 

  • Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manage 46:752–757. https://doi.org/10.2307/3808568

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing

  • Read AJ, Drinker P, Northridge S (2006) Bycatch of marine mammals in U.S. and global fisheries. Conserv Biol 20:163–169. https://doi.org/10.1111/j.1523-1739.2006.00338.x

    Article  PubMed  Google Scholar 

  • Reeves RR, Smith BD, Crespo EA, Notarbartolo di Sciara G (2003) Dolphins, whales and porpoises: 2002–2010 conservation action plan for the world’s cetaceans. IUCN, Gland

    Book  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  • RStudio Team (2021) RStudio: integrated development environment for R

  • Samarra FIP, Tavares SB, Béesau J, Deecke VB, Fennell A, Miller PJO, Pétursson H, Sigurjónsson J, Víkingsson GA (2017) Movements and site fidelity of killer whales (Orcinus orca) relative to seasonal and long-term shifts in herring (Clupea harengus) distribution. Mar Biol 164:159. https://doi.org/10.1007/s00227-017-3187-9

    Article  Google Scholar 

  • Schleimer A, Ramp C, Delarue J, Carpentier A, Bérubé M, Palsbøll PJ, Sears R, Hammond PS (2019) Decline in abundance and apparent survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence Ecol Evol 9:4231–4244. https://doi.org/10.1002/ece3.5055

    Article  PubMed  Google Scholar 

  • Scrucca L, Fop M, Murphy BT, Raftery AE (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8:289–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Servidio A, Pérez-Gil E, Pérez-Gil M, Cañadas A, Hammond PS, Martín V (2019) Site fidelity and movement patterns of short-finned pilot whales within the Canary Islands: evidence for resident and transient populations. Aquat Conserv Mar Freshw Ecosyst 29:227–241. https://doi.org/10.1002/aqc.3135

    Article  Google Scholar 

  • Similä T, Holst JC, Christensen I (1996) Occurrence and diet of killer whales in northern Norway: seasonal patterns relative to the distribution and abundance of Norwegian spring-spawning herring. Can J Fish Aquat Sci 53:769–779. https://doi.org/10.1139/f95-253

    Article  Google Scholar 

  • Stanley TR, Burnham K (1999) A closure test for time-specific capture-recapture data. Environ Ecol Stat 6:197–209. https://doi.org/10.1023/A:1009674322348

    Article  Google Scholar 

  • Stevick PT, Palsbøll PJ, Smith TD, Bravington MV, Hammond PS (2001) Errors in identification using natural markings: rates, sources, and effects on capture-recapture estimates of abundance. Can J Fish Aquat Sci 58:1861–1870. https://doi.org/10.1139/f01-131

    Article  Google Scholar 

  • Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods 7:13–26

    Article  Google Scholar 

  • Tenan S, Hernández N, Fearnbach H, Stephanis R, Verborgh P, Oro D (2020) Impact of maritime traffic and whale-watching on apparent survival of bottlenose dolphins in the Strait of Gibraltar. Aquat Conserv Mar Freshw Ecosyst 30:949–958. https://doi.org/10.1002/aqc.3292

    Article  Google Scholar 

  • Tezanos-Pinto G, Constantine R, Brooks L, Jackson JA, Mourão F, Wells S, Scott Baker C (2013) Decline in local abundance of bottlenose dolphins (Tursiops truncatus) in the Bay of Islands, New Zealand. Mar Mammal Sci. https://doi.org/10.1111/mms.12008

    Article  Google Scholar 

  • Tezanos-Pinto G, Constantine R, Mourão F, Berghan J, Scott Baker C (2015) High calf mortality in bottlenose dolphins in the Bay of Islands, New Zealand-a local unit in decline. Mar Mammal Sci 31:540–559. https://doi.org/10.1111/mms.12174

    Article  Google Scholar 

  • Thompson JW, Zero VH, Schwacke LH, Speakman TR, Quigley BM, Morey JS, McDonald TL (2022) finFindR: Automated recognition and identification of marine mammal dorsal fins using residual convolutional neural networks. Mar Mammal Sci 38:139–150. https://doi.org/10.1111/mms.12849

    Article  Google Scholar 

  • Thorne LH, Foley HJ, Baird RW, Webster DL, Swaim ZT, Read AJ (2017) Movement and foraging behavior of short-finned pilot whales in the Mid-Atlantic Bight: importance of bathymetric features and implications for management. Mar Ecol Prog Ser 584:245–257. https://doi.org/10.3354/meps12371

    Article  Google Scholar 

  • Tschopp A, Ferrari MA, Crespo EA, Coscarella MA (2018) Development of a site fidelity index based on population capture-recapture data. PeerJ 6:e4782. https://doi.org/10.7717/peerj.4782

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Cise AM, Martien KK, Mahaffy SD, Baird RW, Webster DL, Fowler JH, Oleson EM, Morin PA (2017) Familial social structure and socially driven genetic differentiation in Hawaiian short-finned pilot whales. Mol Ecol 26:6730–6741. https://doi.org/10.1111/mec.14397

    Article  PubMed  Google Scholar 

  • Verborgh P, Gauffier P, Esteban R, Stephanis R (2021) Demographic parameters of a free-ranging deep-diving cetacean, the long-finned pilot whale. Mar Mammal Sci 37:463–481. https://doi.org/10.1111/mms.12752

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  Google Scholar 

  • Wells RS, Scott MD (1990) Estimating bottlenose dolphin population parameters from individual identification and capture-release techniques. Individual Recognition of Cetaceans: Use of Photo-identification and other techniques to estimate population parameters. Report of the International Whaling Commission. International Whaling Commission, Cambridge, pp 407–415

    Google Scholar 

  • White GC, Garrott RA (1990) Habitat analysis. In: Analysis of wildlife radio-tracking data. Harcourt Publishers Ltd, pp 183–205

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139. https://doi.org/10.1080/00063659909477239

    Article  Google Scholar 

  • White GC, Cooch EG (2017) Population abundance estimation with heterogeneous encounter probabilities using numerical integration. J Wildl Manage 81:322–336. https://doi.org/10.1002/jwmg.21199

    Article  Google Scholar 

  • Wray J, Keen E, O’Mahony ÉN (2021) Social survival: Humpback whales (Megaptera novaeangliae) use social structure to partition ecological niches within proposed critical habitat. PLoS ONE 16:e0245409. https://doi.org/10.1371/journal.pone.0245409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanardo N, Parra GJ, Möller LM (2016) Site fidelity, residency, and abundance of bottlenose dolphins (Tursiops sp.) in Adelaide’s coastal waters. South Aust Mar Mammal Sci 32:1381–1401. https://doi.org/10.1111/mms.12335

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the students and staff who contributed to this study over the years. The authors are very grateful for the contribution of the following WW companies for their pictures and sighting data: Bonita da Madeira, Gavião Madeira, H2O Madeira, Ventura do Mar, Lobosonda, Santa Maria, Scorpio, Rota dos Cetáceos, Magic Dolphin, OceanSee, Seaborn and VMT. Financial support: Machico Municipality, LIFE, FEDER/INTERREG III-B EU and FCT programs for funding the data collection throughout the projects CETACEOS MADEIRA (LIFE99 NAT/P/006432), MACETUS (MAC/42/M10), EMECETUS (05/MAC/4.2/M10), CETACEOS MADEIRA II (LIFE+ NAT/P/000646), OCEANWEBS (PTDC/MAR-PRO/0929/2014), MISTIC SEAS II (Grant Agreement No. 11.0661/2017/750679/SUB/ENV.C2) and Marine Mammal and Ecosystem: anthropogenic Threat Assessment (META; Fundo Azul Edital nº6/2017) which were carried out by the Madeira Whale Museum. Philippe Verborgh and Ruth Esteban both had scholarships (ARDITI-OOM/2017/006; ARDITI-OOM/2017/008, respectively) within the project Mistic Seas II, under which the photo-identification processing and matching was done for the years 2017 and 2018.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study design and data collection. Photo-ID analysis was performed by PV and EJ. The first draft of the manuscript was written by EJ and PV and all the authors commented on the manuscript. PG created the R code to reproduce the methodology. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Philippe Verborgh.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling editors: Leszek Karczmarski and Stephen C.Y. Chan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on “Individual Identification and Photographic Techniques in Mammalian Ecological and Behavioural Research – Part 2: Field Studies and Applications” — Editors: Leszek Karczmarski, Stephen C.Y. Chan, Scott Y.S. Chui and Elissa Z. Cameron.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (R 25 KB)

Supplementary file2 (PDF 199 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verborgh, P., Janssen, E.H., Esteban, R. et al. Proposing a framework for monitoring demographic parameters in local cetacean populations: the case of short-finned pilot whales in Madeira. Mamm Biol 102, 1425–1444 (2022). https://doi.org/10.1007/s42991-022-00266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-022-00266-y

Keywords

Navigation