Skip to main content

Advertisement

Log in

Optimized Multivariate Analysis for the Discrimination of Cucumber Green Mosaic Mottle Virus-Infected Watermelon Seeds Based on Spectral Imaging

  • Original Article
  • Published:
Journal of Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study proposes a nondestructive sorting method based on the short-wave infrared hyperspectral imaging technique (SWIR-HIT) to detect and classify watermelon seeds infected with the cucumber green mosaic mottle virus (CGMMV). Virus-infected watermelon seeds were collected from virus-infected watermelon plants. Five plates each with 81 seeds were scanned. A total of 304 mean reflectance spectra were used to develop and evaluate virus-infected seed classification models with multivariate analysis methods such as partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and least squares support vector machine (LS-SVM). To determine the optimal preprocessing method, three preprocessing methods were employed: multivariate scatter correct (MSC) as well as first- and second-derivative preprocessing with the Savitzky–Golay algorithm. Among these methods, second-derivative preprocessing with the LS-SVM method showed an approximately 75% accuracy with a 0.57 kappa coefficient for all three classification classes (infected, infection suspected, and sound seeds). Binary classification between infected and sound seeds by LS-SVM with second-derivative preprocessing showed an approximately 92% accuracy with a 0.75 kappa coefficient. To improve the classification accuracy, the genetic algorithm was implemented, and 9 bands were selected. The selected wavelengths were applied to develop and compare classification models with full wavelengths. The three-class classification with the selected bands showed an approximately 80% accuracy, whereas binary classification in infected and sound seeds showed a more than 93% accuracy with a 0.78 kappa coefficient. These results indicate that SWIR-HIT is a valuable nondestructive tool for rapidly classifying CGMMV-infected watermelon seeds using LS-SVM with raw spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Funding

This research was supported by the Export Strategy Technology Development Program, Ministry of Agriculture, Food and Rural Affairs (MAFRA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hoonsoo Lee or Byoung-Kwan Cho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y., Lee, H., Bae, HJ. et al. Optimized Multivariate Analysis for the Discrimination of Cucumber Green Mosaic Mottle Virus-Infected Watermelon Seeds Based on Spectral Imaging. J. Biosyst. Eng. 44, 95–102 (2019). https://doi.org/10.1007/s42853-019-00019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42853-019-00019-9

Keywords

Navigation