Skip to main content

Advertisement

Log in

Dynamics and Characterization of Aeolian Dust Deposition from a Burned Shrubland at Chubut Coastal Patagonia in Argentina

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

A Correction to this article was published on 18 February 2022

This article has been updated

Abstract

The aim of this work is to evaluate the dynamics of dust deposition and characterize its elemental composition in case study at Chubut coastal Patagonia in Argentina after a shrubland fire. On 22 December 2016, a fire took place (42°20′ S–65° W) covering ~ 30 thousand hectares (300 km2) of shrublands. Immediately after the fire (2 January 2017), monthly deposition of dust was recorded using passive collectors in burned and control regions until December 2017. The dust plume of the burned region, visible from MODIS imagery, reached more than 150 km from the coast toward the marine area. In the burned region, dust deposition rates peaked in February (84.75 mg/day m−2), decreased until May (mean value = 12 mg/day m−2), and afterward remained constant (mean value = 10 mg/day m−2) above background level during the studied period. In the control region, dust deposition was constant and significantly lower (mean value = 0.19 mg/day m−2). Overall, the dust elemental composition was mainly Si and O corresponding to silicate minerals. Material from the burned region presented peaks of C. On the other hand, C signals were not present in the dust from the control region. The presence of C, suggests a direct consequence of the burned vegetation. The burned region may become a significant source of dust due to the reduced vegetation coverage, and may constitute an additional input of C into the marine ecosystem. The present study is the first report that provides insights that a burned region in Patagonia may act as a dust source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

All data and material are available under explicit request to corresponding author.

Code Availability

Not applicable.

Change history

References

  • Bertiller M (1984) Specific primary productivity dynamics in arid ecosystems: a case study in Patagonia, Argentina. Acta Oecologica Oecologia Generalis 5(4):365–381

    Google Scholar 

  • Bertiller MB, Beeskow AM, Coronato F (1991) Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). J Arid Environ 21(1):1–11

    Article  Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36(4):639–653

    Article  Google Scholar 

  • Crespi-Abril AC, Montes AMI, Williams GN, Carrasco MF (2016) Uso de sensores remotos para la detección de eventos de transporte eólico de sedimentos hacia ambientes marinos en Patagonia. Meteorol 41(2):33–47

    Google Scholar 

  • Crespi-Abril AC, Soria G, De Cian A, López-Moreno C (2018a) Roaring forties: an analysis of a decadal series of data of dust in Northern Patagonia. Atmos Environ 177:111–119. https://doi.org/10.1016/j.atmosenv.2017.11.019

    Article  Google Scholar 

  • Crespi-Abril AC, Barbieri ES, Villalobos LG, Soria G, Paparazzo FE, Paczkowska JM, Gonçalves RJ (2018b) Perspective: continental Inputs of Matter into Planktonic Ecosystems of the Argentinean Continental Shelf—the Case of Atmospheric Dust. In: Hoffmeyer M, Sabatini ME, Brandini F, Calliari D, Santinelli NH (Eds) Plankton ecology of the Southwestern Atlantic. Luxemburg: Springer, pp 87–99. https://doi.org/10.1007/978-3-319-77869-3_5

  • Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Geider RJ (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320(5878):893–897

    Article  Google Scholar 

  • Gaiero DM, Probst JL, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67(19):3603–3623

    Article  Google Scholar 

  • Gassó S, Stein AF (2007) Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys Res Lett. https://doi.org/10.1029/2006GL027693

    Article  Google Scholar 

  • Gassó S, Torres O (2019) Temporal characterization of dust activity in the Central Patagonia desert (years 1964–2017). J Geophys Res Atmos. https://doi.org/10.1029/2018JD030209

    Article  Google Scholar 

  • Ghermandi L, Guthmann N, Bran D (2004) Early post-fire succession in northwestern Patagonia grasslands. J Veg S 15(1):67–76

    Article  Google Scholar 

  • Gonzalez-Martin C, Teigell-Perez N, Valladares B, Griffin DW (2014) The global dispersion of pathogenic microorganisms by dust storms and its relevance to agriculture. Adv Argonomy 127:1–41. https://doi.org/10.1016/B978-0-12-800131-8.00001-7

    Article  Google Scholar 

  • Guieu C, Bonnet S, Wagener T, Loÿe Pilot MD (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys Res Lett 32(19):L19608. https://doi.org/10.1029/2005GL022962

    Article  Google Scholar 

  • Hamilton DS, Moore JK, Arneth A, Bond TC, Carslaw KS, Hantson S, Ito A, Kaplan JO, Lindsay K, Nieradzik L, Rathod SD (2020) Impact of changes to the atmospheric soluble iron depositionflux on ocean biogeochemical cycles in the anthropocene. Glob Biogeochem Cycl 34:e2019GB006448. https://doi.org/10.1029/2019GB006448

    Article  Google Scholar 

  • Hardtke LA, Blanco PD, del Valle HF, Metternicht GI, Sione WF (2015a) Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery. Int J Appl Earth Obs Geoinf 38:25–35. https://doi.org/10.1016/j.jag.2014.11.011

    Article  Google Scholar 

  • Hardtke LA, Blanco PD, del Valle HF, Metternicht GI, Sione WF (2015b) Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery. Int Arch Photo Rem Sens Spat Info Sci 40(7):811. https://doi.org/10.5194/isprsarchives-XL-7-W3-811-2015

    Article  Google Scholar 

  • Ishizuka M, Mikami M, Leys J, Yamada Y, Heidenreich S, Shao Y, McTainsh GH (2008) Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J Geophys Res Atmos. https://doi.org/10.1029/2008JD009955

    Article  Google Scholar 

  • Ito A, Myriokefalitakis S, Kanakidou M, Mahowald NM, Scanza RA, Hamilton DS, Baker AR, Jickells T, Sarin M, Bikkina S, Gao Y, Shelley R, Buck C, Landing W, Bowie A, Perron M, Guieu C, Meskhidze N, Johnson M, Feng Y, Kok J, Nenes A, Duce R (2019) Pyrogenic iron: The missing link to high iron solubility in aerosols. Sci Adv 5(5):eaau7671. https://doi.org/10.1126/sciadv.aau7671

    Article  Google Scholar 

  • Ito A, Ye Y, Yamamoto A, Watanabe M, Aita MN (2020) Responses of oceanbiogeochemistry to atmospheric supply of lithogenic and pyrogenic iron-containing aerosols. Geol Mag 157(5):741–756. https://doi.org/10.1017/S0016756819001080

    Article  Google Scholar 

  • Jafari R, Malekian M (2015) Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. Int J Rem Sens 36(2):597–617. https://doi.org/10.1080/01431161.2014.999880

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Hawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Rigwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71. https://doi.org/10.1126/science.1105959

    Article  Google Scholar 

  • Johnson MS, Meskhidze N, Solmon F, Gassó S, Chuang PY, Gaiero DM, Yantosca RM, Wu S, Wang Y, Carouge C (2010) Modeling dust and soluble iron deposition to the South Atlantic Ocean. J Geophys Res Atmos 115(D15202):1–13. https://doi.org/10.1029/2009JD013311

    Article  Google Scholar 

  • Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climatesystem. Nature 419(6903):215–223. https://doi.org/10.1038/nature01091

    Article  Google Scholar 

  • Kitzberger T, Veblen TT, Villalba R (1997) Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia, Argentina. J Biogeog 24(1):35–47

    Article  Google Scholar 

  • Kok JF, Parteli EJ, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75(10):106901. https://doi.org/10.1088/0034-4885/75/10/106901

    Article  Google Scholar 

  • Le Canut P, Andreae MO, Harris GW, Wienhold FG, Zenker T (1996) Airborne studies of emissions from savanna fires in southern Africa: 1. Aerosol emissions measured with a laser optical particle counter. J Geophys Res Atmos 101(D19):23615–23630

    Article  Google Scholar 

  • Lekunberri I, Lefort T, Romero E, Vázquez-Domínguez E, Romera-Castillo C, Marrasé C, Peters F, Weinbauer M, Gasol JM (2010) Effects of a dust deposition event on coastal marine microbial abundance and activity, bacterial community structure and ecosystem function. J Plan Res 32(4):381–396. https://doi.org/10.1093/plankt/fbp137

    Article  Google Scholar 

  • León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Aust 8(2):125–144

    Google Scholar 

  • Li F, Ginoux P, Ramaswamy V (2008) Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: contribution of major sources. J Geophys Res-Atmos. https://doi.org/10.1029/2007JD009190

    Article  Google Scholar 

  • Maher BA, Prospero JM, Mackie D, Gaiero D, Hesse PP, Balkanski Y (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci Rev 99(1–2):61–97. https://doi.org/10.1016/j.earscirev.2009.12.001

    Article  Google Scholar 

  • Mahowald NM, Hamilton DS, Mackey KRM, Moore JK, Baker AR, Scanza RA, Zhang Y (2018) Aerosol trace metal leaching and impacts on marine microorganisms. Nat Commun. https://doi.org/10.1038/s41467-018-04970-7

    Article  Google Scholar 

  • Maring H, Savoie DL, Izaguirre MA, McCormick C, Arimoto R, Prospero JM, Pilinis C (2000) Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izana, Tenerife, Canary Islands, during July 1995. J Geophys Res Atmos 105(D11):14677–14700

    Article  Google Scholar 

  • Matsui H, Mahowald NM, Moteki N, Hamilton DS, Ohata S, Yoshida A, Koike M, Scanza RA, Flanner MG (2018) Anthropogenic combustion iron as a complex climate forcer. Nat Commun. https://doi.org/10.1038/s41467-018-03997-0

    Article  Google Scholar 

  • McCullagh P, John N (1989) Generalized Linear Models, 2nd edn. Chapman and Hall/CRC, Boca Raton (ISBN 0-412-31760-5)

    Book  Google Scholar 

  • Mendez J, Guieu C, Adkins J (2010) Atmospheric input of manganese and iron to the ocean: seawater dissolution experiments with Saharan and North American dusts. Mar Chem 120(1–4):34–43. https://doi.org/10.1016/j.marchem.2008.08.006

    Article  Google Scholar 

  • Montes A, Rodríguez SS, Domínguez CE (2017) Geomorphology context and characterization of dunefields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina. Aeolian Res 28:58–70. https://doi.org/10.1016/j.aeolia.2017.08.001

    Article  Google Scholar 

  • Niu H, Zhang D, Hu W, Shi J, Li R, Gao H, Pian W, Hu M (2016) Size and elemental composition of dry-deposited particles during a severe dust storm at a coastal site of Eastern China. J Environ Scie 25(4):957–968. https://doi.org/10.1016/j.jes.2015.09.016

    Article  Google Scholar 

  • Paparazzo FE, Crespi-Abril AC, Gonçalves RJ, Barbieri ES, Gracia Villalobos LL, Solís ME, Soria G (2018) Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography 31(4):33–39. https://doi.org/10.5670/oceanog.2018.408

    Article  Google Scholar 

  • Paruelo JM, Beltrán A, Jobbagy E, Sala OE, Golluscio RA (1999) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Aust 8(2):85–101

    Google Scholar 

  • Paruelo JM, Oesterheld M, Di Bella CM, Arzadum M, Lafontaine J, Cahuepé M, Rebella CM (2000) Estimation of primary production of subhumid rangelands from remote sensing data. Appl Veg Sci 3(2):189–195. https://doi.org/10.2307/1478997

    Article  Google Scholar 

  • Paruelo JM, Golluscio RA, Guerschman JP, Cesa A, Jouve VV, Garbulsky MF (2004) Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Glob Ecol Biogeogr 13(5):385–395. https://doi.org/10.1111/j.1466-822X.2004.00118.x

    Article  Google Scholar 

  • Paytan A, Mackey KR, Chen Y, Lima ID, Doney SC, Mahowald N, Labiosa R, Post AF (2009) Toxicity of atmospheric aerosols on marine phytoplankton. P Natl A Sci 106(12):4601–4605. https://doi.org/10.1073/pnas.0811486106

    Article  Google Scholar 

  • Peter G, Funk FA, Robles SST (2013) Responses of vegetation to different land-use histories involving grazing and fire in the North-east Patagonian Monte. Argent Rangel J 35(3):273–283. https://doi.org/10.1071/RJ12093

    Article  Google Scholar 

  • Pierson FB, Robichaud PR, Spaeth KE (2001) Spatial and temporal effects of wildfire on the hydrology of a steep rangeland watershed. Hydrol Processes 15(15):2905–2916. https://doi.org/10.1002/hyp.381

    Article  Google Scholar 

  • Piñeiro G, Oesterheld M, Paruelo JM (2006) Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9(3):357–373. https://doi.org/10.1007/s10021-005-0013-x

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1–31. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic Press, London

    Google Scholar 

  • Pye K (1995) The nature, origin and accumulation of loess. Quaternary Sci Rev 14:653–667

    Article  Google Scholar 

  • Qu PZ (2016) Chemical properties of continental aerosol transported over the southern ocean: patagonian and namibian sources, PhD Thesis. Université Pierre et Marie Curie, France

  • Ravi S, Zobeck TM, Over TM, Okin GS, D’Odorico P (2006a) On the effect of wet bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 53(3):597–609. https://doi.org/10.1111/j.1365-3091.2006.00775.x

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Herbert B, Zobeck T, Over TM (2006b) Enhancement of wind erosion by fire-induced water repellency. Water Resour Res 42(W11422):1–9. https://doi.org/10.1029/2006WR004895

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Zobeck TM, Over TM, Collins SL (2007) Feedbacks between fires and wind erosion in heterogeneous arid lands. J Geophys Res-Biogeosci 112(G4):1–7. https://doi.org/10.1029/2007JG000474

    Article  Google Scholar 

  • Ridgwell AJ (2002) Dust in the Earth system: the biogeochemical linking of land, air and sea. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360(1801):2905–2924. https://doi.org/10.1098/rsta.2002.1096

    Article  Google Scholar 

  • Sankey JB, Germino MJ, Glenn NF (2009) Aeolian sediment transport following wildfire in sagebrush steppe. J Arid Environ 73(10):912–919. https://doi.org/10.1016/j.jaridenv.2009.03.016

    Article  Google Scholar 

  • Sankey JB, Eitel JU, Glenn NF, Germino MJ, Vierling LA (2011) Quantifying relationships of burning, roughness, and potential dust emission with laser altimetry of soil surfaces at submeter scales. Geomorphology 135(1–2):81–190. https://doi.org/10.1016/j.geomorph.2011.08.016

    Article  Google Scholar 

  • Schreuder LT, Hopmans E, Stuut JBW, Damsté JS, Schouten S (2018) Transport and deposition of the fire biomarker levoglucosan across the tropical North Atlantic Ocean. Geochim Cosmoch 227:171–185. https://doi.org/10.1016/j.gca.2018.02.020

    Article  Google Scholar 

  • Simoneit BR, Elias VO (2000) Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Mar Chem 69(3–4):301–312. https://doi.org/10.1016/S0304-4203(00)00008-6

    Article  Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69(1):47–67

    Article  Google Scholar 

  • Wagener T, Guieu C, Losno R, Bonnet S, Mahowald N (2008) Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications. Global Biogeochem Cy 22(GB2006):1–13. https://doi.org/10.1029/2007GB002984

    Article  Google Scholar 

  • Weichenthal SA, Godri Pollitt K, Villeneuve PJ (2013) PM2.5, oxidant defence and cardiorespiratory health: a review. Environ Health 127:1–40. https://doi.org/10.1186/1476-069X-12-40

    Article  Google Scholar 

  • Whicker JJ, Breshears DD, Wasiolek PT, Kirchner TB, Tavani RA, Schoep DA, Rodgers JC (2002) Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland. J Environ Qual 31(2):599–612

    Article  Google Scholar 

  • Yahdjian L, Sala OE (2006) Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology 87(4):952–962. https://doi.org/10.1890/0012-9658(2006)87[952:VSCPPR]2.0.CO;2

    Article  Google Scholar 

  • Zhang Y, Yu Q, Ma W, Chen L (2010) Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry. J Geophys Res-Atmos 115(D7):1–10. https://doi.org/10.1029/2009JD012814

    Article  Google Scholar 

  • Zhang X, Zhao L, Tong DQ, Wu G, Dan M, Teng B (2016) A systematic review of global desert dust and associated human health effects. Atmosphere 7(12):158. https://doi.org/10.3390/atmos7120158

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. O. Frumento for setting up the meteorological station and maintenance of wind records database, also to Dr. J. P. Pisoni for his revision of the manuscript. Thanks to the Administration de Parques Nacionales (APN) for their assistance with the field work. Also we are grateful to Fundación Patagonia Naturalfor providing the access to La Esperanza where the study was conducted. We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and Information System (EOSDIS). We thank two anonymous reviewers for revising and providing helpful comments, which improved the manuscript. This study was partially founded by the Argentine “Agencia Nacional de Promoción Científica y Tecnológica” through the project PICT-2018-870 granted to A. Crespi-Abril and PICT-2015-1715 granted to G. Soria. The analyses of the samples were conducted in ALUAR S.A.I.C. in the framework of the cooperation project No. 6213/15. The meteorological station was installed under permit DISPOSCION N 142 SsCyAP/17

Funding

This study was partially founded by the Argentine “Agencia Nacional de Promoción Científica y Tecnológica” through the project PICT-2018-870 granted to A. Crespi-Abril and PICT-2015-1715 Granted to G. Soria. The analyses of the samples were conducted in ALUAR S.A.I.C. in the framework of the cooperation Project No. 6213/15. The meteorological station was installed under permit DISPOSCION N 142 SsCyAP/17.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AC-A, GS and EB. The first draft of the manuscript was written by AC-A and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Augusto César Crespi-Abril.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespi-Abril, A.C., Soria, G., Barbieri, E. et al. Dynamics and Characterization of Aeolian Dust Deposition from a Burned Shrubland at Chubut Coastal Patagonia in Argentina. Earth Syst Environ 6, 571–582 (2022). https://doi.org/10.1007/s41748-021-00272-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-021-00272-z

Keywords

Navigation