Skip to main content
Log in

Mechanical characterization of pseudoelastic shape memory alloy hybrid composites

  • Original Paper
  • Published:
ISSS Journal of Micro and Smart Systems Aims and scope Submit manuscript

Abstract

Shape memory alloys (SMAs) are embedded in fiber reinforced plastic (FRP) composites material to achieve properties like higher toughness, shape morphing, variable stiffness etc. Pseudoelastic SMAs are mostly used in improving the energy absorbing capability of composites subjected to impact loading. Pseudoelastic SMA material has the property of absorbing higher strain energy without failure as compared to other engineering materials. Embedding SMA in FRP composites may affect its in-plane properties. This paper deals with study on SMA hybrid GFRP (Glass Fiber Reinforced Plastic) composites to find out the effect of embedding SMA in composites on the mechanical properties such as longitudinal tensile and compressive strength, transverse tensile strength and compressive strength and in-plane shear strength. Experimental results show that longitudinal compressive strength of shape memory alloy hybrid composites (SMAHCs) increases by approximately 30% over pristine composites. There is a marginal change in values of longitudinal tensile strength and in-plane shear strength in SMAHCs as compared to pristine composites whereas there is reduction observed in transverse tensile and compressive strength in SMA hybrid GFRP composites as compared to pristine GFRP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anand Anoop, Harshe Rahul, Joshi Makarand (2013) Resin film infusion: towards structural composites with nanofillers. J Appl Polym Sci. doi:10.1002/app.38855

    Google Scholar 

  • Angioni SL, Meo M, Foreman A (2011) Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review. Smart Mater Struct 20:013001

    Article  Google Scholar 

  • Aurrekoetxea J, Zurbitu J, de Mendibil IO, Agirregomezkorta A, Sánchez-Soto M, Sarrionandia M (2011) Effect of superelastic shape memory alloy wires on the impact behavior of carbon fiber reinforced in situ polymerized poly(butylene terephthalate) composites. Mater Lett 65(863):865

    Google Scholar 

  • Burton DS, Gao X, Brison LC (2006) Finite element simulation of self healing shape memory alloy composite. Mech Mater 38:525–537

    Article  Google Scholar 

  • Farooq U, Gregory K (2010) Explicit dynamic simulation of drop weight low velocity impact on carbon fibrous composite panels. ARP J Eng Appl Sci 5(3):50–61

    Google Scholar 

  • Gao X, Burton D, Turner TL, Brison LC (2006) Finite Element Analysis of adaptive stiffening and shape control SMA hybrid composite”. J Eng Mater Technol 128:285–293

    Article  Google Scholar 

  • Hebda DA, Whitlock ME, Ditman JB, White SR (1995) Manufacturing of adaptive graphite/epoxy structures with embedded nitinol wires. J Intell Mater Syst Struct 6:220–228

    Article  Google Scholar 

  • Kang Ki-Weon, Kim JK (2009) Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature. Compos Struct 88:455–460

    Article  Google Scholar 

  • Khalil SMR, Shokuhfar A, Malekzadeh K, Ghasemi FA (2007) Low-velocity impact response of active thin-walled hybrid composite structures embedded with SMA wires. Thin-Walled Structures 45(9):799–808

    Article  Google Scholar 

  • Meo M, Antonucci E, Duclaux P, Giordano M (2005) Finite element simulation of low velocity impact on shape memory alloy composite plates. Compos Struct 71:337–342

    Article  Google Scholar 

  • Michaud V (2004) Can shape memory alloy composites be smart? Scr Mater 50:249–253

    Article  Google Scholar 

  • Murkute V, Gupta AK, Thakur DG, Harshe R, Joshi M (2014) Improvisation of interfacial bond strength in shape memory alloy hybrid polymer matrix composite. Procedia Mater Sci 6:316–321

    Article  Google Scholar 

  • Ogisu T, Shimanuki M, Kiyoshima S, Takeda N (2005) A basic study of CFRP laminates with embedded prestrained SMA foils for aircraft structures. J Intell Mater Syst Struct 16:175

    Article  Google Scholar 

  • Paine JSN, Rogers CA (1994) Review of multi-functional SMA hybrid composite materials and their applications. Adaptive Struct Compos Mater: Anal Appl 54:37–45

    Google Scholar 

  • Raghavan J, Bartkiewicz T, Boyko S, Kupriyanov M, Rajapakse N, Yu B (2010) Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites. Compos: Part B 41:214–222

    Article  Google Scholar 

  • Rogers CA, Robertshaw HH (1988) Shape memory alloy reinforced composites. Eng Sci Preprints 25 ES P25.8027

  • Smith NA, Antoun GG, Ellis AB, Crone WC (2004) Improved adhesion between nickel–titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos A 35:1307–1312

    Article  Google Scholar 

  • Wei ZG, Tang CY, Lee WB (1997) Design and fabrication of intelligent composites based on shape memory alloys. J Mater Process Technol 69:68–74

    Article  Google Scholar 

  • Wei Z, Sandstrom R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: part I shape-memory materials. J Mater Sci 33:3743–3762

    Article  Google Scholar 

  • Zheng YJ, Cui LS, Schrooten J (2005) Basic design guidelines for SMA/epoxy smart composites. Mater Sci Eng A 390:139–143

    Article  Google Scholar 

Download references

Acknowledgement

Authors wish to acknowledge the support given by Dr. Rahul Harshe and Dr. Rahul Purandare of Composite Research Center, R&DE(E) in doing SEM of composite samples. Authors also like to acknowledge Vinod Murkute for testing and Mr. Subodh Sharma and his team of Composite Research Center, R&DE(E) in fabrication of test samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Velmurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Velmurugan, R. & Joshi, M. Mechanical characterization of pseudoelastic shape memory alloy hybrid composites. ISSS J Micro Smart Syst 6, 149–160 (2017). https://doi.org/10.1007/s41683-017-0016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41683-017-0016-9

Keywords

Navigation