Skip to main content
Log in

Optimization of moderator assembly for neutron flux measurement: experimental and theoretical approaches

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A moderator of paraffin wax assembly has been demonstrated where its thickness can be optimized to thermalize fast neutrons. The assembly is used for measuring fast neutron flux of a neutron probe at different neutron energies, using BF3 (Φ1″ and 2″) and 3He(Φ0.5″) neutron detectors. The paraffin wax thickness was optimized at 6 cm for the neutron probe which contains an Am–Be neutron source. The experimental data are compared with Monte Carlo simulation results using MCNP5 version 1.4. Neutron flux comparison and neutron activation techniques are used for measuring neutron flux of the neutron probe to validate the optimum paraffin moderator thickness in the assembly. The neutron fluxes are measured at (1.17 ± 0.09) × 105 and (1.19 ± 0.1) × 105 n/s, being in agreement with the simulated values. The moderator assembly can easily be utilized for essential requirements of neutron flux measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Bedogni, C. Domingo, N. Roberts et al., Investigation of the neutron spectrum of americium-beryllium sources by Bonner sphere spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A 763, 547–552 (2014). doi:10.1016/j.nima.2014.06.040

    Article  Google Scholar 

  2. F.D. Becchetti, M. Febbraro, R. Torres-Isea et al., 252Cf fission-neutron spectrum using a simplified time-of-flight setup: an advanced teaching laboratory experiment. Am. J. Phys. 81, 112–119 (2013). doi:10.1119/1.4769032

    Article  Google Scholar 

  3. S. Croft, K.A.Miller, Group representation of the prompt fission neutron spectrum of 252Cf. Esarda Bull., 112–114 (2011). https://esarda.jrc.ec.europa.eu/images//Bulletin/Files/B_2011_046.pdf

  4. J.W. Marsh, D.J. Thomas, M. Burke, High resolution measurements of neutron energy spectra from Am-Be and Am-B neutron sources. Nucl. Instrum. Methods Phys. Res. Sect. A 366, 340–348 (1995). doi:10.1016/0168-9002(95)00613-3

    Article  Google Scholar 

  5. J.H. Wu, Y.J. Xu, S.L. Liu et al., Energy spectrum measurement and dose rate estimation of natural neutrons in Tibet region. Nucl. Sci. Tech. 26, 060202 (2015). doi:10.13538/j.1001-8042/nst.26.060202

    Google Scholar 

  6. Z.G. Jiang, Y.G. Yuan, H.Y. Wang et al., Development of a spherical tissue equivalent proportional counter for neutron monitoring. Nucl. Sci. Tech. 26, 060403 (2015). doi:10.13538/j.1001-8042/nst.26.060403

    Google Scholar 

  7. B. Wolle, R. BÃtzner, T. Baloui, Special absorber neutron detector moderator assembly: a new detector system for flux measurements of collimated 2.5 MeV neutrons. Rev. Sci. Instrum. 70, 1194–1196 (1999). doi:10.1063/1.1149322

    Article  Google Scholar 

  8. M.A. Rana, Research and applications of nuclear tracks: developments in Pakistan and global comparison. Nat. Sci. (2012). doi:10.4236/ns.2012.431124

    Google Scholar 

  9. G.F. Knoll, Radiation detection and measurement (Wiley, New York, 2000)

    Google Scholar 

  10. M.U. Rajput, N.L. Maidana, V.R. Vanin et al., Measurement of thermal neutron cross section and resonance integral for the 165Ho(n, γ) 166Ho reaction. Radiochim. Acta Int. J. Chem. Asp. Nucl. Sci. Technol. 97, 63–69 (2009). doi:10.1524/ract.2009.1575

    Google Scholar 

  11. M. Akram, A. Iqbal, S.N. Husaini et al., Determination of boron contents in water samples collected from the Neelum valley, Azad Kashmir, Pakistan. Biol. Trace Elem Res. 139, 287–295 (2011). doi:10.1007/s12011-010-8665-6

    Article  Google Scholar 

  12. K. Haygarth, D. Janik, I. Janik et al., Neutron and β/γ radiolysis of water up to supercritical conditions. 1. β/γ yields for H2, H· atom, and hydrated electron. J. Phys. Chem. A 114, 5034 (2010). doi:10.1021/jp101790p

    Article  Google Scholar 

  13. M. Barbagallo, L. Cosentino, V. Forcina et al., Thermal neutron detection using a silicon pad detector and 6LiF removable converters. Rev. Sci. Instrum. 84, 033503 (2013). doi:10.1063/1.4794768

    Article  Google Scholar 

  14. A.A. Naqvi, M.S. Abdelmonem, G. Al-Misned et al., New source-moderator geometry to improve performance of 252 Cf and 241 Am-Be source-based PGNAA setups. Nucl. Instrum. Methods Phys. Res. Sect. A 562, 358–364 (2006). doi:10.1016/j.nima.2006.02.004

    Article  Google Scholar 

  15. S. Ahmad, S.S. Hussain, M. Sadiq et al., Enhanced and reproducible neutron emission from a plasma focus with pre-ionization induced by depleted uranium (U238). Plasma Phys. Control. Fusion 48, 745 (2006). doi:10.1088/0741-3335/48/6/003

    Article  Google Scholar 

  16. V. Ananiev, A. Belyakov, M. Bulavin, et al., The world’s first pelletized cold neutron moderator at a neutron scattering facility. Nucl. Instrum. Methods Phys. Res. Sect. B 320, 70–74. (2014). http://www1.jinr.ru/Preprints/2012/113(P13-2012-113).pdf

  17. S.N. Ahmed, Physics and engineering of radiation detection (Academic Press, New York, 2007)

    Google Scholar 

  18. M. Zakaullah, A. Waheed, S. Ahmad et al., Study of neutron emission in a low-energy plasma focus with Î2-source-assisted breakdown. Plasma Sources Sci. Technol. 12, 443 (2003). doi:10.1088/0963-0252/12/3/320

    Article  Google Scholar 

  19. M. Zakaullah, K. Alamgir, A. Rasool et al., Correlation of plasma electron temperature with neutron emission in a low-energy plasma focus. IEEE Trans. Plasma Sci. 29, 62–68 (2001). doi:10.1109/27.912943

    Article  Google Scholar 

  20. M. Zakaullah, I. Akhtar, A. Waheed et al., Comparative study of ion, X-ray and neutron emission in a low energy plasma focus. Plasma Sources Sci. Technol. 7, 206 (1998). doi:10.1088/0963-0252/7/2/015

    Article  Google Scholar 

  21. C. International, Neutron probe method using a 503DR Hydroprobe, ICT, Editor, International Pty Ltd: Australia

  22. S.N. Goshal, Nuclear Physics (S Chand Publisher, New Delhi, 1994)

    Google Scholar 

  23. M.H. Jasim, N.T. Abdulameer, Neutron capture cross section measurements of paraffin wax. Int. J. Appl. Innov. Eng. Manag. 3, 112–114 (2014). http://ijaiem.org/volume3issue4/IJAIEM-2014-04-20-034.pdf

  24. V.M. Thakur, A. Jain, K. Biju, et al., Studies on optimization of moderator thickness for BF3 detectors used for monitoring of fissile material. Indian J. Pure Appl. Phys. 50, 811–813 (2012). http://nopr.niscair.res.in/handle/123456789/14910

  25. A.A. Naqvi, M.M. Nagadi, M. Maslehuddin et al., Verification of design calculations of a PGNAA setup using nuclear track detectors. Radiat. Meas. 38, 37–41 (2004). doi:10.1016/S1350-4487(03)00252-X

    Article  Google Scholar 

  26. J.K. Zhao, J.L. Robertson, K.W. Herwig et al., Optimizing moderator dimensions for neutron scattering at the spallation neutron source. Rev. Sci. Instrum. 84, 125104 (2013). doi:10.1063/1.4841875

    Article  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010). doi:10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  28. R. A. Forster T.N.K.G., MCNP—A General Monte Carlo N-Particle Transport Code, Version 5. 2003

  29. M. Borsaru, P.L. Eisler, Neutron activation analysis (slow neutrons), in United States Patent, 1982

  30. J.R. Parrington, D.K. Harold, L.B. Susan et al., Chart of radionuclides—Knoll Atomic Power Laboratory (Naval Reactors, US Department of Energy, Washington, DC, 1996)

    Google Scholar 

  31. M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). doi:10.1016/j.nds.2011.11.002

    Article  Google Scholar 

  32. X-5 Monte Carlo Team, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5 (2003)

  33. M. Tohamy, M. Fayez-Hassan, M.M. Abdel-Khalek, et al., A dual-hemisphere (spherical) irradiation facility for Am-Be neutron field optimization (2009). http://www.iaea.org/inis/collection/NCLCollectionStore/Public/42/009/42009903.pdf

Download references

Acknowledgements

The authors gratefully acknowledge services provided by Mr. Usman Ali, RPL, CIIT, in the fabrication of mechanical assembly and safe handling of neutron sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wazir Muhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, A., Ali, N., Baloch, M.A. et al. Optimization of moderator assembly for neutron flux measurement: experimental and theoretical approaches. NUCL SCI TECH 28, 61 (2017). https://doi.org/10.1007/s41365-017-0213-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0213-z

Keywords

Navigation