Skip to main content
Log in

Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Alpha radiolysis of nitric acid aqueous solution by a 238Pu source is investigated experimentally and theoretically. The time dependence of the nitrous acid yield on dose rate, nitric acid concentration, and nitrate ion concentration is studied. A novel kinetic model for the α-radiolysis of nitric acid aqueous solution is established, by considering the direct and indirect effects. The simulation results agree well with the experimental data, indicating the validity of our model to treat the reaction paths for generation and consumption of nitrous acid. It is shown that the redox reactions involving Pu cannot be neglected in the α-radiolysis of the solution. The results provide a better understanding of the α-ray radiolysis of aqueous nitric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K. Pikaev, V.P. Shilov, A.V. Gogolev, Radiation chemistry of aqueous solutions of actinides. Russ. Chem. Rev. 66, 763–788 (1997)

    Article  Google Scholar 

  2. G.R. Choppin, J. Rydberg, J.-O. Liljenzin, C. Ekberg, The nuclear fuel cycle, in Radiochemistry and Nuclear Chemistry, 4th edn. (Elsevier, Oxford, 2013)

  3. N. Tsoufanidis, The Nuclear Fuel Cycle, 1st edn. (Amer Nuclear Society, LA Grange Park, 2013)

    Google Scholar 

  4. B.J. Mincher, G. Modolo, S.P. Mezyk, Review: the effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent systems. Solvent Extr. Ion Exch. 28, 415–436 (2010)

    Article  Google Scholar 

  5. A. Mozumder, Y. Hatano, Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications (Marcel Dekker Inc, New York, 2004)

    Google Scholar 

  6. R. Tanaka, T. Seguchi, I. Nashiyama et al., JAERI Rev. 4, 95–019 (1995)

    Google Scholar 

  7. M. Daniels, E.E. Wigg, Radiation chemistry of the aqueous nitrate system. I. γ Radiolysis of dilute solutions. J. Phys. Chem. 71, 1024–1033 (1967). doi:10.1021/j100863a039

    Article  Google Scholar 

  8. M. Daniels, E.E. Wigg, Radiation chemistry of the aqueous nitrate system. II. Scavenging and pH effects in the cobalt-60 γ radiolysis of concentrated sodium nitrate solutions. J. Phys. Chem. 73, 3703–3709 (1969)

    Article  Google Scholar 

  9. M. Daniels, Radiation chemistry of the aqueous nitrate system. III. Pulse electron radiolysis of concentrated sodium nitrate solutions. J. Phys. Chem. 73, 3710–3717 (1969). doi:10.1021/j100845a027

    Article  Google Scholar 

  10. A.R. Kazanjian, F.J. Miner, A.K. Brown et al., Radiolysis of nitric acid solutions: LET effects. Trans. Faraday Soc. 66, 2192–2198 (1970). doi:10.1039/TF9706602192

    Article  Google Scholar 

  11. J. Cunningham, Radiation chemistry of ionic solids. IV. Modifying nitrate radiolysis in crystals by compression. J. Phys. Chem. 70, 30–39 (1966). doi:10.1021/j100873a006

    Article  Google Scholar 

  12. T.G. Ward, R.C. Axtmann, G.E. Boyd, Neutron-induced radiolysis of lithium nitrate: LET and phase change effects. Radiat. Res. 33, 456–464 (1968)

    Article  Google Scholar 

  13. T.G. Ward, G.E. Boyd, R.C. Axtmann, Gamma radiolysis of molten lithium nitrate: dose-rate effects. Radiat. Res. 33, 447–455 (1967). doi:10.2307/3572402

    Article  Google Scholar 

  14. H.B. Pogge, F.T. Jones, The effects of temperature and additives in the radiolysis of potassium nitrate. J. Phys. Chem. 74, 1700–1705 (1970). doi:10.1021/j100703a008

    Article  Google Scholar 

  15. N.E. Bibler, Curium-244 α radiolysis of nitric acid: oxygen production from direct radiolysis of nitrate ions. J. Phys. Chem. 78, 211–215 (1974)

    Article  Google Scholar 

  16. J.C. Sheppard, Alpha radiolysis of plutonium(IV)-nitric acid solutions. USAEC Report No. BNWL-751, 1968. doi:10.2172/4505234

  17. A.R. Kazanjian, D.R. Horrell, Radiolytically generated gases in plutonium–nitric acid solutions. Radiat. Eff. Inc. Plasma Sci. Plasma Technol. 13, 277–280 (1972). doi:10.1080/00337577208231191

    Google Scholar 

  18. A. Maimoni, Density and radiolytic decomposition of plutonium nitrate solutions, UCRL-52727, 1979. doi:10.2172/5831913

  19. M.L. Hyder, The radiolysis of aqueous nitrate solutions. J. Phys. Chem. 69, 1858–1865 (1965). doi:10.1021/j100890a012

    Article  Google Scholar 

  20. Y. Katsumura, P.Y. Jiang, R. Nagaishi et al., Pulse radiolysis study of aqueous nitric acid solutions: formation mechanism, yield, and reactivity of ˙NO3, radical. J. Phys. Chem. 95, 4435–4439 (1991). doi:10.1039/FT9949000093

    Article  Google Scholar 

  21. P. Jiang, R. Nagaishi, T. Yotsuyanagi et al., γ-Radiolysis study of concentrated nitric acid solutions. J. Chem. Soc. Faraday Trans. 90, 93–95 (1994). doi:10.1039/FT9949000093

    Article  Google Scholar 

  22. H.A. Mahlman, The “direct effect” in the radiolysis of aqueous sodium nitrate solutions. J. Phys. Chem. 67, 1466–1469 (1963). doi:10.1021/j100801a015

    Article  Google Scholar 

  23. D. Rai, R.G. Strickert, J.L. Ryan, Alpha radiation induced production of HNO3 during dissolution of Pu compounds (1). Inorg. Nucl. Chem. Lett. 16, 551–555 (1980). doi:10.1016/0020-1650(80)80009-2

    Article  Google Scholar 

  24. N.N. Andreychuk, A.A. Frolov, K.V. Rotmanov et al., Plutonium(III) oxidation under α-irradiation in nitric acid solutions. J. Radioanal. Nucl. Chem. 143, 427–432 (1990). doi:10.1007/BF02039611

    Article  Google Scholar 

  25. G. Garaix, L. Venault, A. Costagliola, J. Maurin, M. Guigue, R. Omnee, G. Blain, J. Vandenborre, M. Fattahi, N. Vigier, P. Moisy, Alpha radiolysis of nitric acid and sodium nitrate with 4He2+ beam of 13.5 MeV energy. Radiat. Phys. Chem. 106, 394–403 (2015). doi:10.1016/j.radphyschem.2014.08.008

    Article  Google Scholar 

  26. F.J. Miner, A.R. Kazanjian, A.K. Brown et al., Radiation Chemistry of Nitric Acid Solutions, RFP-1299, 1969. doi:10.2172/4805752

  27. M.V. Vladimirova, Radiation chemistry of actinides. J. Radioanal. Nucl. Chem. 143, 445–454 (1990). doi:10.1007/BF02039613

    Article  Google Scholar 

  28. M.V. Vladimirova, Recent achievements of actinide radiation chemistry. J. Alloys Compd. 271–273, 723–727 (1998)

    Article  Google Scholar 

  29. FACSIMILE for Windows Version 4.2.50 (MCPA Software Ltd., London, 2014)

  30. G. Garaix, G.P. Horne, L. Venault et al., Decay mechanism of NO ·3 radical in highly concentrated nitrate and nitric acidic solutions in the absence and presence of hydrazine. J. Phys. Chem. B. (2016). doi:10.1021/acs.jpcb.6b02915

    Google Scholar 

  31. S. Yamashita, K. Iwamatsu, Y. Maehashi et al., Sequential radiation chemical reactions in aqueous bromide solutions: pulse radiolysis experiment and spur model simulation. RSC Adv. 5, 25877–25886 (2015). doi:10.1039/C5RA03101J

    Article  Google Scholar 

  32. C. Gregson, C. Boxall, M. Carrott et al., Neptunium(V) oxidation by nitrous acid in nitric zcid. Procedia Chem. 7, 398–403 (2012). doi:10.1016/j.proche.2012.10.062

    Article  Google Scholar 

  33. T.E. Eriksen, P. Ndalamba, H. Christensen et al., Radiolysis of ground water: influence of carbonate and chloride on hydrogen peroxide production. J. Radioanal. Nucl. Chem. 132, 19–35 (1989)

    Article  Google Scholar 

  34. B.J. Mincher, M. Precek, S.P. Mezyk et al., The role of oxidizing radicals in neptunium speciation in γ-irradiated nitric acid. J. Radioanal. Nucl. Chem. 296, 27–30 (2013). doi:10.1007/s10967-012-1937-1

    Article  Google Scholar 

  35. G.V. Buxton, C.L. Greenstock, W.P. Helman et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(·OH/·O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513 (1988). doi:10.1063/1.555805

    Article  Google Scholar 

  36. A.J. Elliot, D.M. Bartels, The reaction set, rate constants and G-values for the simulation of the radiolysis of light water over the range 20 °C to 350 °C based on information available in 2008 (2009)

  37. B.J. Mincher, M. Precek, S.P. Mezyk et al., The redox chemistry of neptunium in γ-irradiated aqueous nitric acid. Radiochim. Acta 101, 259–266 (2013). doi:10.1524/ract.2013.2013

    Article  Google Scholar 

  38. J.W. Coddington, J.K. Hurst, S.V. Lymar, Hydroxyl radical formation during peroxynitrous acid decomposition. J. Am. Chem. Soc. 121, 2438–2443 (1999)

    Article  Google Scholar 

  39. S. Goldstein, J. Lind, G. Merenyi, Chemistry of peroxynitrites as compared to peroxynitrates. Chem. Rev. 105, 2457–2470 (2005)

    Article  Google Scholar 

  40. M.H. Lee, Y.J. Park, W.H. Kim, Absorption spectroscopic properties for Pu(III, IV and VI) in nitric and hydrochloric acid media. J. Radioanal. Nucl. Chem. 273, 375–382 (2007). doi:10.1007/s10967-007-6848-1

    Article  Google Scholar 

  41. P.G. Hagan, F.J. Miner, Spectrophotometric determination of plutonium III, IV, and VI in nitric acid solutions, REP-1391, 1969

  42. R.E. Connick, W.H. McVey, The Transuranium Elements (McGraw-Hill Co., New York, 1949)

    Google Scholar 

  43. T. Arakaki, T. Miyake, T. Hirakawa et al., pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(III) (HNO2 and NO2−). Environ. Sci. Technol. 33, 2561–2565 (1999)

    Article  Google Scholar 

  44. E. Riordan, N. Minogue, D. Healy et al., Spectroscopic and optimization modeling study of nitrous acid in aqueous solution. J. Phys. Chem. A 109, 779–786 (2005). doi:10.1021/jp040269v

    Article  Google Scholar 

  45. J. Liu, P. Song, H. Chen et al., Determination of α dose rate of 238Pu solution. J. Nucl. Radiochem. 53, 156–159 (2013). doi:10.7538/hhx.2013.35.03.0156

    Google Scholar 

  46. D. Vione, V. Maurino, C. Minero et al., New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide. Environ. Sci. Technol. 37, 4635–4641 (2003)

    Article  Google Scholar 

  47. J. Park, Y. Lee, Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 92, 6294–6302 (1988)

    Article  Google Scholar 

  48. S.P. Mezyk, D.M. Bartels, Temperature dependence of hydrogen atom reaction with nitrate and nitrite species in aqueous solution. J. Phys. Chem. A 101, 6233–6237 (1997)

    Article  Google Scholar 

  49. L.T. Bugaenko, B.M. Roshchektaev, Radiolytic conversions of nitrate ion in nitric acid solutions. Khimiya Vysok. Energii. 5, 472–474 (1971)

    Google Scholar 

  50. G.A. Poskrebyshev, P. Neta, R.E. Huie, Equilibrium constant of the reaction ·OH + HNO3 ⇆ H2O + NO ·3 in aqueous solution. J. Geophys. Res. 106, 4995–5004 (2001). doi:10.1029/2000JD900702

    Article  Google Scholar 

  51. R.W. Matthews, H.A. Mahlman, T.J. Sworski, Elementary processes in the radiolysis of aqueous nitric acid solution: determination of Both GOH and GNO2. J. Phys. Chem. 76, 2680–2684 (1972)

    Article  Google Scholar 

  52. A. Balcerzyk, A.K. El Omar, U. Schmidhammer et al., Picosecond pulse radiolysis study of highly concentrated nitric acid solutions: formation mechanism of NO ·3 radical. J. Phys. Chem. A 116, 7302–7307 (2012)

    Article  Google Scholar 

  53. A. Appleby, H.A. Schwarz, Radical and molecular yields in water irradiated by γ rays and heavy ions. J. Phys. Chem. 73, 1937–1941 (1969). doi:10.1021/j100726a048

    Article  Google Scholar 

  54. S. Goldstein, G. Czapski, J. Lind et al., Mechanism of decomposition of peroxynitric ion (O2NOO): evidence for the formation. Inorg. Chem. 37, 3943–3947 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yosuke Katsumura (University of Tokyo, Japan) and Dr. Martin Precek (Institute of Physics, Academy of Sciences of the Czech Republic, Prague) for valuable communications and suggestions. We also thank Prof. Chung-King Liu (USTC) and Dr. Han-Qin Weng (USTC) for revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Zhang Lin.

Additional information

This work was partly supported by the National Natural Science Foundation of China (No. 21377122).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fang, Z., Wang, L. et al. Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source. NUCL SCI TECH 28, 54 (2017). https://doi.org/10.1007/s41365-017-0200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0200-4

Keywords

Navigation