Skip to main content

Advertisement

Log in

Construction of DNA-based logic gates on nanostructured microelectrodes

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Electrochemical logical operations utilizing biological molecules (protein or DNA), which can be used in disease diagnostics and bio-computing, have attracted great research interest. However, the existing logic operations, being realized on macroscopic electrode, are not suitable for implantable logic devices. Here, we demonstrate DNA-based logic gates with electrochemical signal as output combined with gold flower microelectrodes. The designed logic gates are of fast response, enzyme-free, and micrometer scale. They perform well in either pure solution or complex matrices, such as fetal bovine serum, suggesting great potential for in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Yan, Nucleic acid nanotechnology. Science 306, 2048–2049 (2004). doi:10.1126/science.1106754

    Article  Google Scholar 

  2. M.N. Stojanovic, D. Stefanovic, A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21, 1069–1074 (2003). doi:10.1038/nbt862

    Article  Google Scholar 

  3. N.C. Seeman, From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30, 119–125 (2005). doi:10.1016/j.tibs.2005.01.007

    Article  Google Scholar 

  4. A.P. de Silva, S. Uchiyama, Molecular logic and computing. Nat. Nanotechnol. 2, 399–410 (2007). doi:10.1038/nnano.2007.188

    Article  Google Scholar 

  5. A. Condon, Designed DNA molecules: principles and applications of molecular nanotechnology. Nat. Rev. Genet. 7, 565–575 (2006). doi:10.1038/nrg1892

    Article  Google Scholar 

  6. P.R. Solanki, A. Kaushik, V.V. Agrawal et al., Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17–24 (2011). doi:10.1038/asiamat.2010.137

    Article  Google Scholar 

  7. M. Motornov, J. Zhou, M. Pita et al., “Chemical transformers” from nanoparticle ensembles operated with logic. Nano Lett. 8, 2993–2997 (2008). doi:10.1021/nl802059m

    Article  Google Scholar 

  8. J. Li, Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater. 2, 112–118 (2010). doi:10.1038/asiamat.2010.84

    Article  Google Scholar 

  9. J.R. Heath, M.A. Ratner, Molecular electronics. Phys. Today 56, 43–49 (2003). doi:10.1063/1.1583533

    Article  Google Scholar 

  10. J.M. Tour, Molecular electronics, synthesis and testing of components. Acc. Chem. Res. 33, 791–804 (2000). doi:10.1021/ar0000612

    Article  Google Scholar 

  11. B. Ding, N.C. Seeman, Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314, 1583–1585 (2006). doi:10.1126/science.1131372

    Article  Google Scholar 

  12. W. Li, F. Zhang, H. Yan et al., DNA based arithmetic function: a half adder based on DNA strand displacement. Nanoscale 8, 3775–3784 (2016). doi:10.1039/c5nr08497k

    Article  Google Scholar 

  13. X.H. Mao, J.C. Du, Q. Huang et al., Application of super-resolution microscopy in biology. Nucl. Tech. 36, 060502–1–060502-8 (2013). doi:10.11889/j.0253-3219.2013.hjs.36.060502. (in Chinese)

    Google Scholar 

  14. Y. Tian, Y. Wang, Y. Xu et al., A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: a combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction. Sci. China Chem. 58, 514–518 (2015). doi:10.1007/s11426-014-5258-9

    Article  Google Scholar 

  15. P.J. Wang, Y. Wan, A. Ali et al., Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 59, 237–242 (2016). doi:10.1007/s11426-015-5488-5

    Article  Google Scholar 

  16. J. Chao, C.H. Fan, A photoelectrochemical sensing strategy for biomolecular detection. Sci. China Chem. 58, 834 (2015). doi:10.1007/s11426-015-5402-1

    Article  Google Scholar 

  17. S.G. Hou, L. Liang, S.H. Deng et al., Nanoprobes for super-resolution fluorescence imaging at the nanoscale. Sci. China Chem. 57, 100–106 (2014). doi:10.1007/s11426-013-5014-6

    Article  Google Scholar 

  18. L.M. Adleman, Molecular computation of solutions To combinatorial problems. Science 266, 1021–1024 (1994). doi:10.1126/science.7973651

    Article  Google Scholar 

  19. O.A. Bozdemir, R. Guliyev, O. Buyukcakir et al., Selective manipulation of ICT and PET processes in styryl-bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions. J. Am. Chem. Soc. 132, 8029–8036 (2010). doi:10.1021/ja1008163

    Article  Google Scholar 

  20. J. Macdonald, Y. Li, M. Sutovic et al., Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6, 2598–2603 (2006). doi:10.1021/nl0620684

    Article  Google Scholar 

  21. F. Pu, Z. Liu, X.J. Yang et al., DNA-based logic gates operating as a biomolecular security device. Chem. Commun. 47, 6024–6026 (2011). doi:10.1039/c1cc11280e

    Article  Google Scholar 

  22. T. Li, L.B. Zhang, J. Ai et al., Ion-Tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACS Nano 5, 6334–6338 (2011). doi:10.1021/nn201407h

    Article  Google Scholar 

  23. M. Ogihara, A. Ray, Molecular computation: DNA computing on a chip. Nature 403, 143–144 (2000). doi:10.1038/35003071

    Article  Google Scholar 

  24. Y. Benenson, B. Gil, U. Ben-Dor et al., An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004). doi:10.1038/nature02551

    Article  Google Scholar 

  25. M. Moshe, J. Elbaz, I. Willner, Sensing of UO2 2+ and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Nano Lett. 9, 1196–1200 (2009). doi:10.1021/nl803887y

    Article  Google Scholar 

  26. X. Feng, X. Duan, L. Liu et al., Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angew. Chem. 48, 5316–5321 (2009). doi:10.1002/anie.200901555

    Article  Google Scholar 

  27. T. Li, E.K. Wang, S.J. Dong, Potassium-Lead-Switched G-Quadruplexes: a new class of DNA logic gates. J. Am. Chem. Soc. 131, 15082–15083 (2009). doi:10.1021/ja9051075

    Article  Google Scholar 

  28. F. Xia, X.L. Zuo, R.Q. Yang et al., Label-Free, dual-analyte electrochemical biosensors: a new class of molecular-Electronic logic gates. J. Am. Chem. Soc. 132, 8557–8559 (2010). doi:10.1021/ja101379k

    Article  Google Scholar 

  29. M.A. Makos, K.A. Han, M.L. Heien et al., Using in vivo electrochemistry to study the physiological effects of cocaine and other stimulants on the drosophila melanogaster dopamine transporter. Acs Chem. Neurosci. 1, 74–83 (2010). doi:10.1021/cn900017w

    Article  Google Scholar 

  30. Y. Takahashi, A.I. Shevchuk, P. Novak et al., Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew. Chem. Int. Edit. 50, 9638–9642 (2011). doi:10.1002/anie.201102796

    Article  Google Scholar 

  31. M.M. Liu, K. Wang, N. Chen et al., Radiotherapy enhancement with gold nanoparticles. Nucl. Tech. 38, 51–56 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.090501. (in Chinese)

    Google Scholar 

  32. G.S. Wei, F.W. Xiang, T. Tian et al., Application of gold nanoparticles in tumor detection and radiation therapy. Radiat. Res. Radiat. Process. 34, 040103–2–040103-6 (2016). doi:10.11889/j.1000-3436.2016.rrj.34.040103. (in Chinese)

    Google Scholar 

  33. J.L. Shen, Y. Xu, K. Li et al., Synthesis of dumbbell-like Au ganostructure and its light-absorbance study. Nucl. Tech. 36, 060501–1–060501-6 (2013). doi:10.11889/j.0253-3219.2013.hjs.36.060501. (in Chinese)

    Google Scholar 

  34. D. Zhu, M. Li, L.H. Wang et al., A micro E-DNA sensor for selective detection of dopamine in presence of ascorbic acid. Nucl. Sci. Tech. 26, 115–119 (2015). doi:10.13538/j.1001-8042/nst.26.060504

    Google Scholar 

  35. Y.P. Luo, L.M. Zhang, W. Liu et al., A single biosensor for evaluating the levels of copper ion and l-Cysteine in a live rat brain with Alzheimer’s disease. Angew. Chem. Int. Edit. 54, 14053–14056 (2015). doi:10.1002/anie.201508635

    Article  Google Scholar 

  36. W.H. Huang, D.W. Pang, H. Tong et al., A method for the fabrication of low-noise carbon fiber nanoelectrodes. Anal. Chem. 73, 1048–1052 (2001). doi:10.1021/ac0008183

    Article  Google Scholar 

  37. D. Zhu, X.L. Zuo, C.H. Fan, Fabrication of nanometer-sized gold flower microelectrodes electrochemical biosensing applications. Sci. China Chem. 45, 1214–1219 (2015). doi:10.1360/N032015-00039. (in Chinese)

    Google Scholar 

  38. X.L. Zuo, S.P. Song, J. Zhang et al., A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 129, 1042–1043 (2007). doi:10.1021/ja067024b

    Article  Google Scholar 

  39. J. Zhang, S.P. Song, L.H. Wang et al., A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc. 2, 2888–2895 (2007). doi:10.1038/nprot.2007.419

    Article  Google Scholar 

  40. C.H. Fan, K.W. Plaxco, A.J. Heeger, Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. U.S.A. 100, 9134–9137 (2003). doi:10.1073/pnas.1633515100

    Article  Google Scholar 

  41. F.B. Meng, Y.M. Hervault, Q. Shao et al., Orthogonally modulated molecular transport junctions for resettable electronic logic gates. Nat. Commun. (2014). doi:10.1038/Ncomms4023

    Google Scholar 

  42. D.F. Wang, Y.M. Fu, J. Yan et al., Molecular logic gates on DNA origami nanostructures for MicroRNA diagnostics. Anal. Chem. 86, 1932–1936 (2014). doi:10.1021/ac403661z

    Article  Google Scholar 

  43. E.M. Cornett, E.A. Campbell, G. Gulenay et al., Molecular logic gates for DNA analysis: detection of rifampin resistance in M. tuberculosis DNA. Angew. Chem. Int. Edit. 51, 9075–9077 (2012). doi:10.1002/anie.201203708

    Article  Google Scholar 

  44. S. Erbas-Cakmak, E.U. Akkaya, Cascading of molecular logic gates for advanced functions: a self-reporting activatable photosensitizer. Angew. Chem. Int. Edit. 52, 11364–11368 (2013). doi:10.1002/anie.201306177

    Article  Google Scholar 

  45. R. Pan, M.C. Xu, D.C. Jiang et al., Nanokit for single-cell electrochemical analyses. Proc. Natl. Acad. Sci. U.S.A. 113, 11436–11440 (2016). doi:10.1073/pnas.1609618113

    Article  Google Scholar 

  46. S. Umehara, M. Karhanek, R.W. Davis et al., Label-free biosensing with functionalized nanopipette probes. Proc. Natl. Acad. Sci. U.S.A. 106, 4611–4616 (2009). doi:10.1073/pnas.0900306106

    Article  Google Scholar 

  47. J.E. Dick, A.T. Hilterbrand, A. Boika et al., Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. Proc. Natl. Acad. Sci. U.S.A. 112, 5303–5308 (2015). doi:10.1073/pnas.1504294112

    Article  Google Scholar 

  48. F.O. Laforge, J. Carpino, S.A. Rotenberg et al., Electrochemical attosyringe. Proc. Natl. Acad. Sci. U.S.A. 104, 11895–11900 (2007). doi:10.1073/pnas.0705102104

    Article  Google Scholar 

  49. B.P. Helmke, A.R. Minerick, Designing a nano-interface in a microfluidic chip to probe living cells: challenges and perspectives. Proc. Natl. Acad. Sci. U.S.A. 103, 6419–6424 (2006). doi:10.1073/pnas.0507304103

    Article  Google Scholar 

Download references

Acknowledgements

Ali Aldalbahi acknowledges the support by the Deanship of Scientific Research, College of Science Research Center at King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Hua Wang, Xiao-Lei Zuo or Yun Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 31470960 and 21422508).

Authors Tao Wei and Min Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Li, M., Zhang, YY. et al. Construction of DNA-based logic gates on nanostructured microelectrodes. NUCL SCI TECH 28, 35 (2017). https://doi.org/10.1007/s41365-017-0191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0191-1

Keywords

Navigation