Skip to main content

Advertisement

Log in

A segmented conical electric lens for optimization of the beam spot of the low-energy muon facility at PSI: a Geant4 simulation analysis

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The low-energy muon facility at PSI provides nearly fully polarized positive muons with tunable energies in the keV range to carry out muon spin rotation (LE-\(\upmu \)SR) experiments with nanometer depth resolution on thin films, heterostructures, and near-surface regions. The low-energy muon beam is focused and transported to the sample by electrostatic lenses. In order to achieve a minimum beam spot size at the sample position and to enable the steering of the beam in the horizontal and vertical direction, a special electrostatic device has been implemented close to the sample position. It consists of a cylinder at ground potential followed by four conically shaped electrodes, which can be operated at different electric potential. In LE-\(\upmu \)SR experiments, an electric field at the sample along the beam direction can be applied to accelerate/decelerate muons to different energies (0.5–30 keV). Additionally, a horizontal or vertical magnetic field can be superimposed for transverse or longitudinal field \(\upmu \)SR experiments. The focusing properties of the conical lens in the presence of these additional electric and magnetic fields have been investigated and optimized by Geant4 simulations. Some experimental tests were also performed and show that the simulation well describes the experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Yaouanc, P.D. de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford University Press, Oxford, 2011)

    Google Scholar 

  2. E. Morenzoni, Physics and applications of low energy muons, Muon Science: Muons in Physics, Chemistry and Materials (Bristol and Philadelphia, 1999), vol. 51, eds. by S.L. Lee, S.H. Kilcoyne, R. Cywinski, pp. 343–404 (1998)

  3. E. Morenzoni, H. Glückler, T. Prokscha et al., Low-energy \(\mu \)SR at PSI: present and future. Phys. B: Condens. Matter 289, 653–657 (2000). doi:10.1016/S0921-4526(00)00303-3

    Article  Google Scholar 

  4. D. Harshman Jr., A. Mills, J. Beveridge et al., Generation of slow positive muons from solid rare-gas moderators. Phys. Rev. B 36, 8850 (1987). doi:10.1103/PhysRevB.36.8850

    Article  Google Scholar 

  5. E. Morenzoni, F. Kottmann, D. Maden et al., Generation of very slow polarized positive muons. Phys. Rev. Lett. 72, 2793 (1994). doi:10.1103/PhysRevLett.72.2793

    Article  Google Scholar 

  6. T. Prokscha, E. Morenzoni, K. Deiters et al., The new \(\mu \)e4 beam at PSI: a hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods A 595, 317–331 (2008). doi:10.1016/j.nima.2008.07.081

    Article  Google Scholar 

  7. E. Morenzoni, R. Khasanov, H. Luetkens et al., Low energy muons as probes of thin films and near surface regions. Phys. B: Condens. Matter 326, 196–204 (2003). doi:10.1016/S0921-4526(02)01601-0

    Article  Google Scholar 

  8. E. Morenzoni, T. Prokscha, A. Suter et al., Nano-scale thin film investigations with slow polarized muons. J. Phys.: Condens. Matter 16, S4583 (2004). doi:10.1088/0953-8984/16/40/010

    Google Scholar 

  9. T. Prokscha, K. Chow, E. Stilp et al., Photo-induced persistent inversion of germanium in a 200-nm-deep surface region. Sci. Rep. 3, 2569 (2013). doi:10.1038/srep02569

    Article  Google Scholar 

  10. E. Morenzoni, T. Prokscha, H. Saadaoui, et al., Low-energy muons at PSI: examples of investigations of superconducting properties in near-surface regions and heterostuctures, in Proceedings of the International Symposium on Science Explored by Ultra Slow Muon (USM2013), JPS Conference Proceedings, Vol. 2, id. 010201, p. 10, , p. 0201, 2014. doi:10.7566/JPSCP.2.010201

  11. L. Schulz, L. Nuccio, M. Willis et al., Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 10, 39–44 (2011). doi:10.1038/nmat2912

    Article  Google Scholar 

  12. A. Suter, E. Morenzoni, T. Prokscha et al., Two-dimensional magnetic and superconducting phases in metal-insulator \(\text{ La }_{2-x}\text{ Sr }_x\text{ CuO }_4\) superlattices measured by muon-spin rotation. Phys. Rev. Lett. 106, 237003 (2011). doi:10.1103/PhysRevLett.106.237003

    Article  Google Scholar 

  13. A. Boris, Y. Matiks, E. Benckiser et al., Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011). doi:10.1126/science.1202647

    Article  Google Scholar 

  14. A. Hofmann, Z. Salman, M. Mannini et al., Depth-dependent spin dynamics in thin films of \(\text{ TbPc }_2\) nanomagnets explored by low-energy implanted muons. ACS Nano. 6, 8390–8396 (2012). doi:10.1021/nn3031673

    Article  Google Scholar 

  15. E. Stilp, A. Suter, T. Prokscha et al., Controlling the near-surface superfluid density in underdoped \(\text{ YBa }_2\text{ Cu }_3\text{ O }_{6+x}\) by photo-illumination. Sci. Rep. 4, 6250 (2014). doi:10.1038/srep06250

    Article  Google Scholar 

  16. H. Saadaoui, Z. Salman, H. Luetkens et al., The phase diagram of electron-doped \(\text{ La }_{2-x}\text{ Ce }_x\text{ CuO }_{4-\delta }\). Nat. Commun. 6, 6041 (2015). doi:10.1038/ncomms7041

    Article  Google Scholar 

  17. F. Al Ma’Mari, T. Moorsom, G. Teobaldi et al., Beating the stoner criterion using molecular interfaces. Nature 524, 69–73 (2015). doi:10.1038/nature14621

    Article  Google Scholar 

  18. L. Anghinolfi, H. Luetkens, J. Perron et al., Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015). doi:10.1038/ncomms9278

    Article  Google Scholar 

  19. M. Flokstra, N. Satchell, J. Kim et al., Remotely induced magnetism in a normal metal using a superconducting spin-valve. Nat. Phys. 12, 57–61 (2016). doi:10.1038/nphys3486

    Article  Google Scholar 

  20. T. Prokscha, E. Morenzoni, C. David et al., Moderator gratings for the generation of epithermal positive muons. Appl. Surf. Sci. 172, 235–244 (2001). doi:10.1016/S0169-4332(00)00857-6

    Article  Google Scholar 

  21. P. Bakule, E. Morenzoni, Generation and applications of slow polarized muons. Contemp. Phys. 45, 203–225 (2004). doi:10.1080/00107510410001676803

    Article  Google Scholar 

  22. Low energy muons: overview of the experimental setup. http://www.psi.ch/low-energy-muons/experimental-setup

  23. E. Morenzoni, H. Glückler, T. Prokscha et al., Implantation studies of keV positive muons in thin metallic layers. Nucl. Instrum. Methods B 192, 254–266 (2002). doi:10.1016/S0168-583X(01)01166-1

    Article  Google Scholar 

  24. K. Sedlak, R. Scheuermann, T. Shiroka et al., MusrSim and MusrSimAna-simulation tools for \(\mu \)SR instruments. Phys. Proced. 30, 61–64 (2012). doi:10.1016/j.phpro.2012.04.040:

    Article  Google Scholar 

  25. S. Agostinelli, J. Allison, K. Amako et al., Geant4–a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  26. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. Nucl. Sci. 53, 270–278 (2006). doi:10.1109/TNS.2006.869826

    Article  Google Scholar 

  27. Z. Salman, T. Prokscha, P. Keller et al., Design and simulation of a spin rotator for longitudinal field measurements in the low energy muons spectrometer. Phys. Proced. 30, 55–60 (2012). doi:10.1016/j.phpro.2012.04.039

    Article  Google Scholar 

  28. T.K. Paraiso, E. Morenzoni, T. Prokscha et al., Geant4 simulation of low energy \(\mu \)SR experiments at PSI. Phys. B: Condens. Matter 374, 498–501 (2006). doi:10.1016/j.physb.2005.11.140

    Article  Google Scholar 

  29. E. Morenzoni, M. Birke, H. Glückler et al., Generation of very slow polarized muons by moderation. Hyperfine Interact. 106, 229–235 (1997). doi:10.1023/A:1012610528798

    Article  Google Scholar 

  30. K.S. Khaw, A. Antognini, P. Crivelli et al., Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the \(\mu \)SR spectrometer. J. Instrum. 10, 10025 (2015). doi:10.1088/1748-0221/10/10/P10025

    Article  Google Scholar 

Download references

Acknowledgements

Ran Xiao acknowledges a scholarship from the China Scholarship Council (CSC) and financial support from PSI for her stay at PSI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Xiao or Thomas Prokscha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Morenzoni, E., Salman, Z. et al. A segmented conical electric lens for optimization of the beam spot of the low-energy muon facility at PSI: a Geant4 simulation analysis. NUCL SCI TECH 28, 29 (2017). https://doi.org/10.1007/s41365-017-0190-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0190-2

Keywords

Navigation