Skip to main content
Log in

Low emittance lattice design with Robinson wiggler in the arc section

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Beam emittance reduction is an effective method to increase the brightness of a synchrotron light source. Robinson wiggler can play a role in the beam emittance reduction by increasing the horizontal damping partition number. A replacement of the quadrupoles in the arc section with short combined function dipoles will construct a single-periodic Robinson wiggler in the SSRF storage ring. This scheme provides a lower beam emittance, without occupying any straight section. Detailed analysis is presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Sands, The physics of electron storage rings an introduction. SLAC-121 (1970)

  2. E.D. Courant, H.S. Snyder, Theory of the alternating-gradient synchrotron. Ann. Phys. 3, 1–48 (1958)

    Article  MATH  Google Scholar 

  3. R. Dowd, M. Boland, G. LeBlanc et al., Achievement of ultralow emittance coupling in the Australian Synchrotron storage ring. Phys. Rev. Spec. Top. Accel. Beams 14, 012804 (2011). doi:10.1103/PhysRevSTAB.14.012804

    Article  Google Scholar 

  4. M. Tischer, K. Balewski, A. Batrakov et al., Damping wigglers at the PETRA III Light source, in Proceedings of EPAC08, Genoa, Italy, (2008), pp. 2317–2319

  5. D. Einfeld, M. Plesko, J. Schaper, First multi-bend achromat lattice consideration. J. Synchrotron Radiat. 21, 856–861 (2014). doi:10.1107/S160057751401193X

    Article  Google Scholar 

  6. M. Eriksson, L.-J. Lindgren, M. Sjostrom et al., Some small-emittance light-source lattices with multi-bend achromats. Nucl. Instrum. Methods Phys. Res. A 587, 221–226 (2008). doi:10.1016/j.nima.2008.01.068

    Article  Google Scholar 

  7. S.C. Leemann, A. Andersson, M. Eriksson et al., Beam dynamics and expected performance of Sweden’s new storage-ring light source: MAX IV. Phys. Rev. Spec. Top. Accel. Beams 12, 120701 (2009). doi:10.1103/PhysRevSTAB.12.120701

    Article  Google Scholar 

  8. R. Nagaoka, A.F. Wrulich, Emittance minimization with longitudinal dipole field variation. Nucl. Instrum. Methods Phys. Res. A 575, 292–304 (2007). doi:10.1016/j.nima.2007.02.086

    Article  Google Scholar 

  9. A. Streun, The anti-bend cell for ultralow emittance storage ring lattices. Nucl. Instrum. Methods Phys. Res. A 737, 148–154 (2014). doi:10.1016/j.nima.2013.11.064

    Article  Google Scholar 

  10. K.W. Robinson, Radiation effects in circular electron accelerators. Phys. Rev. 111(2), 373–380 (1958)

    Article  MATH  Google Scholar 

  11. A. Hofmann, Design and performance of the damping system for beam storage in the CEA, in Proceedings of the 6th ICHEA, Cambridge, Massachusetts, 1967, p. 123

  12. Y. Baconnier, R. Cappi, J.P. Riunaud et al., Emittance control of the PS e± beams using a Robinson wiggler. Nucl. Instrum. Methods Phys. Res. A 234, 244–252 (1985). doi:10.1016/0168-9002(85)90912-X

    Article  Google Scholar 

  13. H. Abualrob, P. Brunelle, M.-E. Couprie et al., SOLEIL emittance reduction using a Robinson wiggler, in Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012, pp. 702–704

  14. T. Goetsch, J. Feikes, M. Ries et al., A Robinson wiggler for the metrology light source, in Proceedings of IPAC2014, Dresden, Germany, 2014, pp. 2001–2003

  15. J.Y. Li, G.F. Liu, W. Xu et al., A possible approach to reduce the emittance of HLS-II storage ring using a Robinson wiggler. Chin. Phys. C 37(10), 107006 (2013). doi:10.1088/1674-1137/37/10/107006

    Article  Google Scholar 

  16. Z.T. Zhao, H.J. Xu, H. Ding, Commissioning of the Shanghai light source, in Proceedings of PAC09, Vancouver, British Columbia, Canada, 2009, pp. 55–59

  17. B.C. Jiang, G.Q. Lin, B.L. Wang et al., Multi-bunch injection for SSRF storage ring. Nucl. Sci. Tech. 26(5), 050101 (2015). doi:10.13538/j.1001-8042/nst.26.050101

    Google Scholar 

  18. Z.T. Zhao, L.X. Yin, Y.B. Leng et al., Consideration on the future major upgrades of the SSRF storage ring, in Proceedings of IPAC2015, Richmond, VA, USA, 2015, pp. 1672–1674

  19. S.Q. Tian, B.C. Jiang, Y.B. Leng et al., Double-mini-βy optics design in the SSRF storage ring. Nucl. Sci. Tech. 25(3), 030101 (2014). doi:10.13538/j.1001-8042/nst.25.030101

    Google Scholar 

  20. S.Q. Tian, B.C. Jiang, Q.G. Zhou et al., Lattice design and optimization of the SSRF storage ring with super-bends. Nucl. Sci. Tech. 25(1), 010102 (2014). doi:10.13538/j.1001-8042/nst.25.010102

    Google Scholar 

  21. H. Tanaka, A. Ando, Minimum effective emittance in synchrotron radiation sources composed of modified Chasman Green lattice. Nucl. Instrum. Methods Phys. Res. A 369, 312–321 (1996). doi:10.1016/0168-9002(95)00773-3

    Article  Google Scholar 

  22. I.P.S. Martin, G. Rehm, C. Thomas et al., Experience with low-alpha lattices at the Diamond Light Source. Phys. Rev. Spec. Top. Accel. Beams 14, 040705 (2011). doi:10.1103/PhysRevSTAB.14.040705

    Article  Google Scholar 

  23. X. Wang, S.Q. Tian, G.M. Liu, Low-alpha optics design for SSRF. Nucl. Sci. Tech. 21, 134–140 (2010)

    Google Scholar 

  24. L. Yang, Y. Li, W. Guo et al., Multiobjective optimization of dynamic aperture. Phys. Rev. Spec. Top. Accel. Beams 14, 054001 (2011). doi:10.1103/PhysRevSTAB.14.054001

    Article  Google Scholar 

  25. A. Terebilo, Accelerator toolbox for MATLAB, SLAC-PUB-8732 (2001)

  26. C.M. Luo, S.Q. Tian, K. Wang et al., Parallelizing AT with open multi-processing and MPI. Nucl. Sci. Tech. 26(3), 030104 (2015). doi:10.13538/j.1001-8042/nst.26.030104

    Google Scholar 

  27. J. Laskar, Frequency map analysis and particle accelerators, in Proceedings of PAC03, Portland, Oregon, USA, 2003, pp. 378–382

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Qiang Tian.

Additional information

This work was supported by the Beamline Project of Shanghai Synchrotron Radiation Facility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, SQ., Zhang, QL., Zhang, MZ. et al. Low emittance lattice design with Robinson wiggler in the arc section. NUCL SCI TECH 28, 9 (2017). https://doi.org/10.1007/s41365-016-0166-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0166-7

Keywords

Navigation