Skip to main content
Log in

A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The gamma-ray mass attenuation coefficients of blood, bone, lung, eye lens, adipose, tissue, muscle, brain and skin were calculated at different energies (60, 80, 150, 400, 500, 600, 1000, 1250, 1500, and 2000 keV) by various theoretical methods such as FLUKA, GEANT4 Monte Carlo (MC) methods and XCOM program in this work. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST) values. Obtained results were highly in accordance with each other and NIST values. Our results showed that FLUKA was quite convenient in comparison to GEANT4 in the calculation of the mass attenuation coefficients of the used human body samples for low-energy photons (60, 80, and 150 keV) when compared with the NIST values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.T. Bushberg, J.A. Seibert, E.M. Leidholdt, J.M. Boone, The Essential Physics of Medical Imaging (William-Wilkins Press, New York, 2001)

    Google Scholar 

  2. M.J. Berger, J.H. Hubbell, Photon Cross section on a Personal Computer (XCOM). NBSIR87-3597 (National Institute of Standards and Technology, Gaithersburg, 1987)

    Book  Google Scholar 

  3. T.T. Böhlen, F. Cerutti, M.P.W. Chin et al., The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211–214 (2014). doi:10.1016/j.nds.2014.07.049

    Article  Google Scholar 

  4. A. Ferrari, P.R. Sala, A. Fasso, et al., Fluka: A Multi-Particle Transport Code. CERN, INFN/TC_05/11, SLAC-R-773 (2005)

  5. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  6. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). doi:10.1109/TNS.2006.869826

    Article  Google Scholar 

  7. E.E. Ermis, C. Celiktas, E. Pilicer, A method to enhance coincidence time resolution with applications for medical imaging systems (TOF/PET). Radiat. Meas. 62, 52–59 (2014). doi:10.1016/j.radmeas.2014.01.013

    Article  Google Scholar 

  8. B. Alpat, E. Pilicer, S. Blasko et al., Total and partial fragmentation cross-section of 500 MeV/nucleon carbon ions on different target materials. IEEE Trans. Nucl. Sci. 60, 4673–4682 (2013). doi:10.1109/TNS.2013.2284855

    Article  Google Scholar 

  9. I. Tapan, F.B. Pilicer, Silicon tracker simulation for the Turkish Accelerator Center particle factory. Nucl. Instrum. Methods A 765, 240–243 (2014). doi:10.1016/j.nima.2014.05.100

    Article  Google Scholar 

  10. B. Alpat, E. Pilicer, L. Servoli et al., Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests. JINST 7, P03013 (2012). doi:10.1088/1748-0221/7/03/P03013

    Article  Google Scholar 

  11. A. Tomal, I. Mazarro, E.M. Kakuno et al., Experimental determination of linear attenuation coefficient of normal, benign and malignant breast tissues. Radiat. Meas. 45, 1055–1059 (2010). doi:10.1016/j.radmeas.2010.08.008

    Article  Google Scholar 

  12. A. Böke, Linear attenuation coefficients of tissues from 1 keV to 150 keV. Radiat. Phys. Chem. 102, 49–59 (2014). doi:10.1016/j.radphyschem.2014.04.006

    Article  Google Scholar 

  13. A. Akar, H. Baltas, U. Cevik et al., Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies. JQSRT 102, 203–211 (2006). doi:10.1016/j.jqsrt.2006.02.007

    Article  Google Scholar 

  14. CERN, Geant4 collaboration physics reference manual. http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf. Accessed 22 May 2015

  15. G. Battistoni, F. Cerutti, A. Fasso et al., The FLUKA code: description and benchmarking. AIP Conf. Proc. 86, 31–49 (2007). doi:10.1063/1.2720455

    Article  Google Scholar 

  16. W.W. Moses, S.E. Derenzo, Prospects for time-of-flight PET using LSO scintillator. IEEE Trans. Nucl. Sci. 46, 474–478 (1999). doi:10.1109/23.775565

    Article  Google Scholar 

  17. ICRP Report. http://www.icrp.org/docs/ICRP%20Annual%20Report%202012.pdf. Accessed 22 May 2015

  18. ICRU, Tissue Substitutes in Radiation Dosimetry and Measurement, Report 44 of the International Commission on Radiation Units and Measurements (Bethesda, MD, 1989)

  19. National Institute of Standards and Technology (NIST), X-ray mass attenuation coefficients. http://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html. Accessed 22 May 2015

  20. D.E. Cullen, J.H. Hubbell, L. Kissel, The Evaluated Photon Data Library 97 version (EPDL97). http://www.ge.infn.it/geant4/temp/saracco/cor/EPDL97.pdf. Accessed 22 May 2015

  21. G. Roach, J. Tickner, Y.V. Haarlem, Discrepancies in atomic shell and fluorescent X-ray energies in the Evaluated Photon Data Library EPDL97. X-ray Spectrom. 41, 279–283 (2012). doi:10.1002/xrs.2392

    Article  Google Scholar 

  22. F. Botta, A. Mairani, G. Battistoni et al., Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy. Med. Phys. 38, 3944–3954 (2011). doi:10.1118/1.3586038

    Article  Google Scholar 

  23. C. Robert, G. Dedes, G. Battistoni et al., Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes. Phys. Med. Biol. 58, 2879–2899 (2013). doi:10.1088/0031-9155/58/9/2879

    Article  Google Scholar 

  24. M.E. Medhat, Comprehensive study of photon through different construction matters by Monte Carlo simulation. Radiat. Phys. Chem. 107, 65–74 (2015). doi:10.1016/j.radphyschem.2014.09.005

    Article  Google Scholar 

  25. M. Esfandiari, S.P. Shirmardi, M.E. Medhat, Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCOM and experimental data. Radiat. Phys. Chem. 99, 30–36 (2014). doi:10.1016/j.radphyschem.2014.02.011

    Article  Google Scholar 

  26. V.P. Singh, M.E. Medhat, N.M. Badiger, Photon attenuation coefficients of thermoluminescent dosimetric materials by Geant4 toolkit, XCOM program and experimental data: a comparison study. Ann. Nucl. Energy 68, 96–100 (2014). doi:10.1016/j.anucene.2014.01.011

    Article  Google Scholar 

  27. V.P. Singh, M.E. Medhat, N.M. Badiger, Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation. Radiat. Phys. Chem. 106, 83–87 (2015). doi:10.1016/j.radphyschem.2014.07.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Ermis.

Additional information

This study was supported by Scientific Research 277 Project of Ege University under Project No. 2014 FEN 026 and 278 Uludag University under Project No. OUAP(F)-2012/26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermis, E.E., Pilicer, F.B., Pilicer, E. et al. A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods. NUCL SCI TECH 27, 54 (2016). https://doi.org/10.1007/s41365-016-0053-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0053-2

Keywords

Navigation