Skip to main content
Log in

Experimental study of temperature dependence of single-event upset in SRAMs

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We report on the temperature dependence of single-event upsets in the 215–353 K range in a 4M commercial SRAM manufactured in a 0.15-μm CMOS process, utilizing thin film transistors. The experimental results show that temperature influences the SEU cross section on the rising portion of the cross-sectional curve (such as the chlorine ion incident). SEU cross section increases 257 % when the temperature increases from 215 to 353 K. One of the possible reasons for this is that it is due to the variation in upset voltage induced by changing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.A. Kolasinski, R. Koga, E. Schnauss et al., The effect of elevated temperature on latchup and bit errors in CMOS devices. IEEE Trans. Nucl. Sci. 33, 1605–1609 (1986). doi:10.1109/TNS.1986.4334649

    Article  Google Scholar 

  2. J.S. Larid, T. Hirao, S. Onoda et al., Temperature dependency of heavy ion induced current transients in Si epilayer devices. IEEE Trans. Nucl. Sci. 49, 1389–1395 (2002). doi:10.1109/RADECS.2001.1159269

    Article  Google Scholar 

  3. M.S. Copper, J.P. Retzler, G.C. Messenger, High temperature Schottky TTL latchup. IEEE Trans. Nucl. Sci. 25, 1538–1544 (1978). doi:10.1109/TNS.1978.4329568

    Article  Google Scholar 

  4. A.H. Johnston, B.H. Hughlock, M.P. Baze et al., The effect of temperature on single-particle latchup. IEEE Trans. Nucl. Sci. 38, 1435–1441 (1991). doi:10.1109/23.124129

    Article  Google Scholar 

  5. W.J. Stapor, P.T. McDonald, S.L. Swickert et al., Low temperature proton induced upsets in NMOS resistive load static RAM. IEEE Trans. Nucl. Sci. 35, 1596–1601 (1988). doi:10.1109/23.25504

    Article  Google Scholar 

  6. D. Truyen, J. Boch, B. Sagnes et al., Temperature effect on heavy-ion induced parasitic current on SRAM by device simulation: effect on SEU sensitivity. IEEE Trans. Nucl. Sci. 54, 1025–1029 (2007). doi:10.1109/TNS.2007.894298

    Article  Google Scholar 

  7. M.J. Gadlage, J.R. Ahlbin, B. Narasimham et al., Single-event transient measurements in nMOS and pMOS transistors in a 65-nm bulk CMOS technology at elevated temperatures. IEEE Trans. Device Mater. Reliab. 11, 179–186 (2011). doi:10.1109/TDMR.2010.2102354

    Article  Google Scholar 

  8. G. Goo, T. Hirao, J.S. Larid et al., Temperature dependency of single event transient current by heavy ion microbeam on p +/n/n + epilayer junction. IEEE Trans. Nucl. Sci. 51, 2834–2839 (2004)

    Article  Google Scholar 

  9. D. Truyen, J. Boch, B. Sagness et al., Temperature effect on heavy-ion-induced single-event transient propagation in CMOS bulk 0.18 μm inverter chain. IEEE Trans. Nucl. Sci. 55, 2001–2006 (2008). doi:10.1109/TNS.2008.2000851

    Article  Google Scholar 

  10. M.J. Gadlage, J.R. Ahlbin, V. Ramachandran et al., Temperature dependence of digital single-event transients in bulk and fully-depleted SOI technologies. IEEE Trans. Nucl. Sci. 56, 3115–3121 (2009)

    Article  Google Scholar 

  11. M.J. Gadlage, J.R. Ahlbin, B. Narasimham et al., Increased single-event transient pulse widths in a 90-nm bulk CMOS technology operating at elevated temperatures. IEEE Trans. Device Mat Re 10, 157–163 (2010). doi:10.1109/TDMR.2009.2036719

    Article  Google Scholar 

  12. B.W. Liu, S.M. Chen, B. Liang et al., Temperature dependency of charge sharing and MBU sensitivity in 130-nm CMOS technology. IEEE Trans. Nucl. Sci. 56, 2473–2479 (2009). doi:10.1109/TNS.2009.2022267

    Article  Google Scholar 

  13. M.V. O’Bryan, C.F. Poivey, K.A. Label, et al. Compendium of current single event effects results for candidate spacecraft electronics for NASA. IEEE NSREC 153–161 (2007). doi:10.1109/REDW.2007.4342557

  14. H.X. Guo, Y.H. Luo, ZhB Yao et al., Experimental study of single event effects on SRAM with submicron feature size. Atom Energy Sci. Technol. 44, 1498–1504 (2010). (in Chinese)

    Google Scholar 

  15. J.R. Schwank, V. Ferlet-Cavrois, M.R. Shaneyfelt et al., Radiation effects in SOI technologies. IEEE Trans. Nucl. Sci. 50, 522–538 (2003). doi:10.1109/TNS.2003.812930

    Article  Google Scholar 

  16. J. Benedetto, P. Eaton, K. Avery et al., Heavy ion induced digital single-event transients in deep submicron processes. IEEE Trans. Nucl. Sci. 51, 3480–3485 (2004). doi:10.1109/TNS.2004.839173

    Article  Google Scholar 

  17. P.E. Dodd, M.R. Shaneyfelt, J.A. Felix et al., Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Trans. Nucl. Sci. 51, 3278–3284 (2004). doi:10.1109/TNS.2004.839172

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Kin Kiong Lee for fruitful discussion. This project was supported by the National Natural Science Foundation of China (No. 11405275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Guo, G., Liu, JC. et al. Experimental study of temperature dependence of single-event upset in SRAMs. NUCL SCI TECH 27, 16 (2016). https://doi.org/10.1007/s41365-016-0014-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0014-9

Keywords

Navigation