Skip to main content
Log in

An Improved Compression Algorithm for Hyperspectral Images based on DVAT-SVD

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2017

This article has been updated

Abstract

Hyperspectral image (HSI) compression has recently become a popular research area in remote sensing applications. However, existing clustering and compression techniques are not based on the intensity value and work by forming static rules. To overcome these issues, a novel lossy (nearly lossless) compression algorithm based on the distributed visual assessment cluster tendency (DVAT) – singular value decomposition (SVD) technique is proposed. At first, the given HSI image is preprocessed by cellular automata filtering to remove the white Gaussian and speckle noise. After that, the preprocessed image is split into bands, which are formed to a distance matrix. Here, the distances between the image bands are predicted to identify pixels with related intensity values. Hence, the DVAT technique is implemented to cluster the nearest distance images. Then, the label of the cluster is optimally selected for segregating the band into a band index. Consequently, the cluster index is formed and the image matrix is clustered based on the label features. After that, the SVD technique is applied to encode the HSI band image. Therefore, the discrete wavelet transform technique is applied for transformation and the transformed cell redundancy check technique is employed to encode the image band. Then, the image is reconstructed by reversing the above processes. The major advantages of the proposed method comprise a cleared clustered output, a correct index value, and the reduction of data losses during compression. During experimental results, the performance of the proposed method was evaluated in terms of the compression ratio, the mean-square error, and the peak signal-to-noise ratio.

Zusammenfassung

Ein verbesserter Algorithmus zur Kompression hyperspektraler Bilddaten basierend auf DVAT-SVD. Die Kompression hyperspektraler Bilddaten (HSI) hat in jüngerer Vergangenheit zunehmend an Bedeutung für fernerkundliche Anwendungen gewonnen. Existierende Cluster- und Kompressionstechniken basieren allerdings nicht auf dem Intensitätswert, sondern lediglich auf statischen Regelwerken. In diesem Beitrag wird eine neue, verlustarme (quasi verlustfreie) Datenkompressionsmethode vorgestellt, die auf der Distributed Visual Assessment Cluster Tendency (DVAT) – Singulärwertzerlegung (SVD) basiert. Zunächst werden aus dem vorliegenden HSI mittels Zellularer Automaten das weiße Gaußsche Rauschen sowie der Speckle herausgefiltert. Für die Kompression wird aus den einzelnen vorverarbeiteten Bändern eine Distanzmatrix aufgebaut. Dazu werden die Abstände zwischen den einzelnen Bändern berechnet, die wiederum als Eingang für eine Clusteranalyse mittels der DVAT-Technik verwendet werden. Die anschließende SVD zur eigentlichen Kompression der HSI beruht auf der diskreten Wavelet Transformation (DWT). Zur Verschlüsselung kommt der Transformed Cell Redundancy Check (TCRC) zum Einsatz. Das Bild kann durch die entsprechenden Umkehrprozesse rekonstruiert werden. Wesentliche Vorteile des vorgestellten Ansatzes liegen in einem bereinigten Cluster-Output, einem korrekten Indexwert sowie einem niedrigen Datenverlust durch die Kompression. Die Performance der neuen Methodik wurde mittels der Kompressionsratio (CR), dem mittleren quadratischen Fehler (MSE) und dem Peak des Signal-Rausch-Verhältnisses (PSNR) evaluiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 02 October 2017

    An erratum to this article has been published.

References

  • AVIRIS (2015) Airborne Visible/Infrared Imaging Spectrometer. http://aviris.jpl.nasa.gov/data/free_data.html. Accessed 1 Jun 2016

  • Chen C, Li W, Tramel EW, Cui M, Prasad S, Fowler JE (2014) Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1047–1059

    Article  Google Scholar 

  • Cheng K-J , Dill JC (2013) Lossless to lossy compression for hyperspectral imagery based on wavelet and integer KLT transforms with 3D binary EZW. In: Proceedings of the SPIE 8743, algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XIX, 87430U, 18 May 2013

  • Cheng K-J, Dill JC (2014a) An improved EZW hyperspectral image compression. J Comput Commun 2:31–36

    Article  Google Scholar 

  • Cheng K-J, Dill JC (2014b) Lossless to lossy dual-tree BEZW compression for hyperspectral images. IEEE Trans Geosci Remote Sens 52(9):5765–5770

    Article  Google Scholar 

  • Computational Intelligence Group (2014) Hyperspectral Remote Sensing Scenes. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes. Accessed 10 June 2016

  • Espinola M, Piedra-Fernandez J, Ayala R, Iribarne L, Wang JZ (2015) Contextual and hierarchical classification of satellite images based on cellular automata. IEEE Trans Geosci Remote Sens 53(2):795–809

    Article  Google Scholar 

  • García-Vílchez F, Muñoz-Marí J, Zortea M, Blanes I, González-Ruiz V, Camps-Valls G, Plaza A, Serra-Sagristà J (2011) On the impact of lossy compression on hyperspectral image classification and unmixing. IEEE Geosci Remote Sens Lett 8(2):253–257

    Article  Google Scholar 

  • Geng X, Ji L, Zhao Y, Wang F (2013) A small target detection method for the hyperspectral image based on higher order singular value decomposition (HOSVD). IEEE Geosci Remote Sens Lett 10(6):1305–1308

    Article  Google Scholar 

  • Havens TC, Bezdek JC (2012) An efficient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm. IEEE Trans Knowl Data Eng 24(5):813–822

    Article  Google Scholar 

  • He W, Zhang H, Zhang L, Shen H (2014) A noise-adjusted iterative randomized singular value decomposition method for hyperspectral image denoising. In: IEEE international geoscience and remote sensing symposium (IGARSS), 13–18 July 2014

  • Jones HDT, Haaland DM, Sinclair MB, Melgaard DK, Collins AM, Timlin JA (2012) Preprocessing strategies to improve MCR analyses of hyperspectral images. Chemom Intell Lab Syst 117:149–158

    Article  Google Scholar 

  • Karami A, Yazdi M, Mercier G (2012) Compression of hyperspectral images using discerete wavelet transform and tucker decomposition. IEEE J Sel Topics Appl Earth Obs Remote Sens 5(2):444–450

    Article  Google Scholar 

  • Li C, Sun T, Kelly KF, Zhang Y (2012) A compressive sensing and unmixing scheme for hyperspectral data processing. IEEE Trans Image Process 21(3):1200–1210

    Article  Google Scholar 

  • Li X, Ren J, Zhao C, Qiao T, Marshall S (2014) Novel multivariate vector quantization for effective compression of hyperspectral imagery. Opt Commun 332:192–200

    Article  Google Scholar 

  • Ma Y, Zhang J, An N (2014) Spectral fidelity analysis of compressed sensing reconstruction hyperspectral remote sensing image based on wavelet transformation. In: Li S, Liu C, Wang Y (eds) Pattern recognition, vol 484. Springer, Berlin

  • Mamatha A, Singh V (2014) Lossless hyperspectral image compression using intraband and interband predictors. In: International conference on advances in computing, communications and informatics (ICACCI), 24–27. Sept. 2014

  • Martín G, Bioucas-Dias JM, Plaza A (2015) HYCA: a new technique for hyperspectral compressive sensing. IEEE Trans Geosci Remote Sens 53(5):2819–2831

    Article  Google Scholar 

  • Martín G, Plaza A (2012) Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):380–395

    Article  Google Scholar 

  • Mielikainen J (2011) Lookup-table based hyperspectral data compression. In: Huang B (ed) Satellite data compression. Springer, Berlin

    Google Scholar 

  • Mielikainen J, Huang B (2012) Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length. IEEE Geosci Remote Sens Lett 9(6):1118–1121

    Article  Google Scholar 

  • Mora-López L, Mora J (2015) An adaptive algorithm for clustering cumulative probability distribution functions using the Kolmogorov–Smirnov two-sample test. Expert Syst Appl 42(8):4016–4021

  • O’Hagan A, Murphy TB, Gormley IC, McNicholas PD, Karlis D (2014) Clustering with the multivariate normal inverse Gaussian distribution. Comput Stat Data Anal 93:18–30

    Article  Google Scholar 

  • Puri A, Sharifahmadian E, Latifi S (2014) A comparison of hyperspectral image compression methods. Int J Comput Electr Eng 6(6):493–500

    Article  Google Scholar 

  • Ramesh S, Bharat P, Anand J, Selvan JA (2014) Analysis of lossy hyperspectral image compression techniques. Int J Comput Sci Mobile Comput 3(2):302–307

    Google Scholar 

  • Rasti B, Sveinsson JR, Ulfarsson MO, Benediktsson JA (2013) Hyperspectral image denoising using a new linear model and Sparse Regularization. In: IEEE international geoscience and remote sensing symposium (IGARSS), 21–26 July 2013

  • Sahin U, Uguz S, Sahin F (2014) Salt and pepper noise filtering with fuzzy-cellular automata. Comput Electr Eng 40(1):59–69

    Article  Google Scholar 

  • Santos L, Magli E, Vitulli R, Lopez JF, Sarmiento R (2013) Highly-parallel GPU architecture for lossy hyperspectral image compression. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):670–681

    Article  Google Scholar 

  • Tang Y, Xin Q, Li G, Wan JW (2012) Lossless compression of hyperspectral images based on contents. Guangxue Jingmi Gongcheng (Opt Precis Eng) 20(3):668–674

    Google Scholar 

  • Wang C, Miao Z, Feng W, He W, Chen Q, Gu G (2013) An optimized hybrid encode based compression algorithm for hyperspectral image. In: SPIE 9045, 2013 international conference on optical instruments and technology: optoelectronic imaging and processing technology, 90451V, 19 Dec 2013

  • Wang L, Bai J, Wu J, Jeon G (2015) Hyperspectral image compression based on lapped transform and Tucker decomposition. Signal Process Image Commun 36:63–69

    Article  Google Scholar 

  • Wu J, Kong W, Mielikainen J, Huang B (2015) Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers. IEEE Signal Process Lett 22(12):2194–2198

    Article  Google Scholar 

  • Yuan Y, Zheng X, Lu X (2015) Spatial kernel regularized for hyperspectral image denoising. IEEE Trans Geosci Remote Sens 53(7):3815–3832

    Article  Google Scholar 

  • Zhong C, Yue X, Lei J (2015) Visual hierarchical cluster structure: a refined co-association matrix based visual assessment of cluster tendency. Pattern Recognit Lett 59:48–55

    Article  Google Scholar 

  • Zong-Chang G, Xiao-Ling Z (2011) Lossless compression of hyperspectral imasges using improved locally averaged interband scaling lookup tables. In: international conference on wavelet analysis and pattern recognition (ICWAPR), 10–13 July 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thiyagarajan.

Additional information

The original version of this article was revised. The authors first and family names were exchanged.

An erratum to this article is available at https://doi.org/10.1007/s41064-017-0026-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, S., Gnanadurai, D. An Improved Compression Algorithm for Hyperspectral Images based on DVAT-SVD. PFG 85, 169–181 (2017). https://doi.org/10.1007/s41064-017-0017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-017-0017-0

Keywords

Navigation