Skip to main content

Advertisement

Log in

Late Holocene paleoceanography in the Chukchi and Beaufort Seas, Arctic Ocean, based on benthic foraminifera and ostracodes

  • Original Article
  • Published:
arktos

Abstract

Calcareous microfossil assemblages in late Holocene sediments from the western Arctic continental shelf provide an important baseline for evaluating the impacts of today’s changing Arctic oceanography. This study compares 14C-dated late Holocene microfaunal assemblages of sediment cores SWERUS-L2-2-PC1, 2-MC4 and 2-KL1 (57 mwd), which record the last 4200 years in the Herald Canyon (Chukchi Sea shelf), and HLY1302-JPC-32, GGC-30, MC-29 (60 mwd), which record the last 3000 years in the Beaufort Sea shelf off the coast of Canada. Foraminiferal and ostracode assemblages are typical of Arctic continental shelf environments with annual sea-ice cover and show relatively small changes in terms of variability of dominant species. Important microfaunal changes in the Beaufort site include a spike in Spiroplectammina biformis coinciding with a decrease in Cassidulina reniforme in the last few centuries suggesting an increase of Pacific Water influence and decreased sea-ice. There is low-amplitude centennial-scale variability in proportions of benthic foraminiferal species, such as C. reniforme. In addition to these species, Cassidulina teretis s.l., Elphidium excavatum clavatum and Stainforthia feylingi are also common at this site. At the Herald Canyon site in the last few centuries, C. reniforme peaks around 150 years BP and then decreases while Spiroplectammina earlandi spikes and Acanthocythereis dunelmensis decreases also suggesting an increase in Pacific Water influence and decreased sea-ice at this site. This site also includes Buccella spp. and Elphidium excavatum clavatum. Differences in benthic foraminifera and ostracode species dominance between the two sites may be due to a greater influence of Pacific Water in the Chukchi shelf, compared to the more distal Beaufort shelf, which is also affected by the Beaufort Gyre and the Mackenzie River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Plate 1
Plate 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartels M, Titschack J, Fahl K, Stein R, Seidenkrantz MS, Hillaire-Marcel C, Hebbeln D (2017) Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation. Clim Past 13:1717

    Google Scholar 

  2. Cavalieri DJ, Parkinson CL (2012) Arctic sea ice variability and trends, 1979–2010. Cryosphere 6:881

    Google Scholar 

  3. Carmack EC, Macdonald RW (2002) Oceanography of the Canadian Shelf of the Beaufort Sea: a setting for marine life. Arctic 55:29–45

    Google Scholar 

  4. Cronin TM, Dwyer GS, Caverly EK, Farmer J, DeNinno LH, Rodriguez-Lazaro J, Gemery L (2017) Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~ 400,000 years ago. Sci Rep 7:14475

    Google Scholar 

  5. Chistyakova NO, Ivanova EV, Risebrobakken B, Ovsepyan EA, Ovsepyan YS (2010) Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages. Oceanology 50:573–581

    Google Scholar 

  6. Coachman LK, Aagaard K (1966) On the water exchange through Bering Strait. Limnol Oceanogr 11:44–59

    Google Scholar 

  7. Coachman LK, Aagaard K (1974) Physical oceanography of Arctic and subarctic seas. In: Herman Y (eds) Marine geology and oceanography of the Arctic seas. Springer, Berlin, pp 1–72

    Google Scholar 

  8. Coachman LK, Aagaard K, Tripp RB (1975) Bering Strait: the regional physical oceanography. University of Washington Press, Seattle

    Google Scholar 

  9. Danielson SL, Weingartner TJ, Hedstrom KS, Aagaard K, Woodgate R, Curchitser E, Stabeno PJ (2014) Coupled wind-forced controls of the Bering–Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient. Prog Oceanogr 125:40–61

    Google Scholar 

  10. Fatela F, Taborda R (2002) Confidence limits of species proportions in microfossil assemblages. Mar Micropaleontol 45:169–174

    Google Scholar 

  11. Frey KE, Moore GWK, Cooper LW, Grebmeier JM (2015) Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Prog Oceanogr 136:32–49

    Google Scholar 

  12. Gemery L, Cronin TM, Cooper LW, Grebmeier JM (2013) Temporal changes in benthic ostracode assemblages in the Northern Bering and Chukchi Seas from 1976 to 2010. Deep Sea Res Part II 94:68–79

    Google Scholar 

  13. Gemery L, Cronin TM, Briggs WM, Brouwers EM, Schornikov EI, Stepanova A, Wood AM, Yasuhara M (2015) An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications. Hydrobiologia 786:59–95. https://doi.org/10.1007/s10750-015-2587-4

    Article  Google Scholar 

  14. Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. 1. Food supply source and benthic biomass. Marine Ecol Prog Ser 48:57–67

    Google Scholar 

  15. Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006) Ecosystem dynamics of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Google Scholar 

  16. Grebmeier JM (2011) Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Ann Rev Mar Sci 4:63–78

    Google Scholar 

  17. Hald M, Korsun S (1997) Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. J Foraminifer Res 27:101–122

    Google Scholar 

  18. Hald M, Steinsund PI (1996) Benthic foraminifera and carbonate dissolution in the surface sediments of the Barents and Kara Seas. Berichte zur Polarforschung 212:285–307

    Google Scholar 

  19. Harada N (2016) Review: potential catastrophic reduction of sea ice in the western Arctic Ocean: its impact on biogeochemical cycles and marine ecosystems. Glob Planet Change 136:1–17

    Google Scholar 

  20. Ishman SE, Foley KM (1996) Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean. Micropaleontology 42:206–216

    Google Scholar 

  21. Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke HW (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39

  22. Jakobsson M, Pearce C, Cronin TM, Backman J, Anderson LG, Barrientos N, Björk G, Coxall H, de Boer A, Mayer LA, Mörth CM, Nilsson J, Rattray JE, Stranne C, Semiletov I, O’Regan M (2017) Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records. Clim Past 13:991–1005

    Google Scholar 

  23. Jennings AE, Helgadottir G (1994) Foraminiferal assemblages from the fjords and shelf of eastern Greenland. J Foraminifer Res 24:123–144

    Google Scholar 

  24. Knudsen KL, Seidenkrantz MS (1994) Stainforthia feylingi new species from Arctic to subarctic environments, previously recorded as Stainforthia schreibersiana (Czjzek). Cushman Found Foraminifer Res Spec Publ 32:5–13

    Google Scholar 

  25. Knudsen KL, Stabell B, Seidenkrantz MS, Eiriksson J, Blake W (2008) Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes. Boreas 37:346–376

    Google Scholar 

  26. Korsun S, Hald M (2000) Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic. J Foraminifer Res 30:251–271

    Google Scholar 

  27. Lagoe MB (1977) Recent benthic foraminifera from the Central Arctic Ocean. J Foraminifer Res 7:106–129

    Google Scholar 

  28. Lazar KB, Polyak L, Dipre GR (2016) Re-examination of the use of Cassidulina neoteretis as a biostratigraphic marker in the arctic ocean. J Foraminifer Res 46:115–123

    Google Scholar 

  29. Loeblich AR Jr, Tappan H (1953) Studies of Arctic foraminifera. Smithsonian Miscellaneous Collection, v. 121. J Mar Biol Assoc UK 24:201–226

    Google Scholar 

  30. McDougall KA, Brouwers EM, Smith P (1986) Micropaleontology and sedimentology of the PB borehole series, Prudhoe Bay, Alaska. US Government Printing Office, Washington, DC

    Google Scholar 

  31. McNeely R, Dyke AS, Southon JR (2006) Canadian Marine Reservoir Ages Preliminary Data Assessment, Open File 5049 Geological Survey of Canada 3

  32. Overland JE, Roach AT (1987) Northward flow in the Bering and Chukchi Seas. J Geophys Res Oceans 92:7097–7105

    Google Scholar 

  33. Ovsepyan YS, Taldenkova EE, Bauch HA, Kandiano ES (2015) Late Pleistocene-Holocene events on the continental slope of the Laptev Sea: evidence from benthic and planktonic foraminiferal assemblages. Stratigr Geol Correl 23:645–660

    Google Scholar 

  34. Paull CK, Ussler W, Dallimore SR, Blasco SM, Lorenson TD, Melling H, Medioli BE, Nixon FM, McLaughlin FA (2007) Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophys Res Lett 34:L01603

    Google Scholar 

  35. Pearce C, Varhelyi A, Wastegård S, Muschitiello F, Barrientos N, O’Regan M, Cronin TM, Gemery L, Semiletov I, Backman J, Jakobsson M (2017) The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea. Clim Past 13:303

    Google Scholar 

  36. Pickart RS, Pratt LJ, Torres DJ, Whitledge TE, Proshutinsky AY, Aagaard K, Agnew TA, Moore GWK, Dail HJ (2010) Evolution and dynamics of the flow through Herald Canyon in the Western Chukchi Sea. Deep Sea Res Part II 57:5–26

    Google Scholar 

  37. Polyak L, Korsun S, Febo LA, Stanovoy V, Khusid T, Hald M, Paulsen BE, Lubinski DJ (2002) Benthic foraminiferal assemblages from the southern Kara Sea, a river-influenced Arctic marine environment. J Foraminifer Res 32:252–273

    Google Scholar 

  38. Polyak L, Belt ST, Cabedo-Sanz P, Yamamoto M, Park YH (2016) Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies. Holocene 26:1810–1821

    Google Scholar 

  39. Raup DM (1991) The future of analytical paleobiology. Short Courses Paleontol 4:207–216

    Google Scholar 

  40. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Google Scholar 

  41. Rodionov SN, Bond NA, Overland JE (2007) The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep Res Part II Top Stud Oceanogr 54:2560–2577

    Google Scholar 

  42. Schell TM, Scott DB, Rochon A, Blasco S (2008) Late Quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Special Issue on the theme Polar Climate Stability Network. Can J Earth Sci 45:1399–1415

    Google Scholar 

  43. Scott DB, Schell T, Rochon A, Blasco S (2008) Modern benthic foraminifera in the surface sediments of the Beaufort Shelf, Slope and Mackenzie Trough, Beaufort Sea, Canada: taxonomy and summary of surficial distributions. J Foraminifer Res 38:228–250

    Google Scholar 

  44. Scott DB, Schell T, Rochon A, Blasco S (2008) Benthic foraminifera in the surface sediments of the Beaufort Shelf and slope, Beaufort Sea, Canada: applications and implications for past sea-ice conditions. J Mar Syst 74:840–863

    Google Scholar 

  45. Scott DB, Schell T, St-Onge G, Rochon A, Blasco S (2009) Foraminiferal assemblage changes over the last 15,000 years on the Mackenzie-Beaufort Sea Slope and Amundsen Gulf, Canada: Implications for past sea ice conditions. Paleoceanography 24(2)

  46. Schröder-Adams CJ, Cole FE, Medioli FS, Mudie PJ, Scott DB, Dobbin L (1990) Recent Arctic shelf foraminifera; seasonally ice covered vs. perennially ice covered areas. J Foraminifer Res 20:8–36

    Google Scholar 

  47. Seidenkrantz M-S (1995) Cassidulina teretis Tappan and Cassidulina neoteretis new species (Foraminifera): stratigraphic markers for deep sea and outer shelf areas. J Micropalaeontol 14:145–157

    Google Scholar 

  48. Seidenkrantz M-S (2013) Benthic foraminifera as palaeo sea-ice indicators in the subarctic realm–examples from the Labrador Sea–Baffin Bay region. Quat Sci Rev 79:135–144

    Google Scholar 

  49. Sejrup HP, Guilbault JP (1980) Cassidulina reniforme and C. obtusa (Foraminifera), taxonomy, distribution, and ecology. Sarsia 65:79–85

    Google Scholar 

  50. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605

    Google Scholar 

  51. Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam SI (2017) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci 32:362–379

    Google Scholar 

  52. Stepanova A, Taldenkova E, Simstich J, Bauch HA (2007) Comparison study of the modern ostracod associations in the Kara and Laptev seas: ecological aspects. Mar Micropaleontol 63:111–142

    Google Scholar 

  53. Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225

    Google Scholar 

  54. Stuiver M, Reimer PJ, Reimer RW (2017) CALIB 7.1 [WWW program]. http://calib.org. Accessed Dec 2017

  55. Taldenkova E, Bauch HA, Stepanova A, Ovsepyan Y, Pogodina I, Klyuvitkina T, Nikolaev S (2013) Benthic and planktic community changes at the North Siberian margin in response to Atlantic gemerwater mass variability since last deglacial times. Mar Micropaleontol 96:13–28

    Google Scholar 

  56. Tappan H (1951) Northern Alaska index foraminifera. Contrib Cushman Found Foraminifer Res 2:1–8

    Google Scholar 

  57. Walsh JJ, McRoy CP, Coachman LK, Goering JJ, Nihoul JJ, Whitledge TE, Blackburn TH, Parker PL, Wirick CD, Shuert PG, Grebmeier JM (1989) Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog Oceanogr 22:277–359

    Google Scholar 

  58. Weingartner T, Aagaard K, Woodgate R, Danielson S, Sasaki Y, Cavalieri D (2005) Circulation on the north central Chukchi Sea shelf. Deep Sea Res Part II 52:3150–3174

    Google Scholar 

  59. Wollenburg JE, Knies J, Mackensen A (2004) High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 204:209–238

    Google Scholar 

  60. Wollenburg JE, Mackensen A (1998) On the vertical distribution of living (Rose Bengal stained) benthic foraminifers in the Arctic Ocean. J Foraminifer Res 28:268–285

    Google Scholar 

  61. Woodgate RA, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32:L02602

    Google Scholar 

  62. Woodgate RA, Aagaard K, Weingartner TJ (2005) A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep Sea Research Part II Top Stud Oceanogr 52:3116–3149

    Google Scholar 

  63. Woodgate RA, Aagaard K, Weingartner TJ (2006) Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys Res Lett 33:2–6

    Google Scholar 

  64. Woodgate RA, Weingartner T, Lindsay R (2010) The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys Res Lett 37: L15609

    Google Scholar 

  65. Yasuhara M, Stepanova A, Okahashi H, Cronin TM, Brouwers EM (2014) Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean. Micropaleontology 60:399–444

    Google Scholar 

  66. Rodrigues CG, Hooper K, Jones PC (1980) The apertural structures of Islandiella and Cassidulina. J Foramin Res 10(1):48–60

    Google Scholar 

  67. Feyling-Hanssen RW (1972) The foraminifer Elphidium excavatum (Terquem) and its variant forms. Micropaleontology 18(3):337

    Google Scholar 

Download references

Acknowledgements

Thanks to the scientists and crew on the icebreaker Oden for the Swedish-Russian-US Investigation of Climate, Cryosphere and Carbon interaction (SWERUS-C3) expedition in 2014 and USCGC Healy 1302 expedition in 2013. The SWERUS-C3 program was funded by a grant from the Knut and Alice Wallenberg Foundation and by the Swedish Polar Research Secretariat. A National Science Foundation grant (ARC-1204045) funded the Healy 1302 expedition. Thanks to A. Ruefer, A. Xu and S. Fisher for sample processing and M. Toomey for help with the age model. The U.S. Geological Survey Climate and Land Use R&D Program funded this study. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia L. Seidenstein.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 168 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidenstein, J.L., Cronin, T.M., Gemery, L. et al. Late Holocene paleoceanography in the Chukchi and Beaufort Seas, Arctic Ocean, based on benthic foraminifera and ostracodes. Arktos 4, 1–17 (2018). https://doi.org/10.1007/s41063-018-0058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0058-7

Keywords

Navigation