Skip to main content

Advertisement

Log in

Geochemistry of a middle Devonian cannel coal (Munindalen) in comparison with Carboniferous coals from Svalbard

  • Original Article
  • Published:
arktos

Abstract

Since the appearance of trees in the Devonian, coal preservation in the geological rock record considerably increased and since then terrestrial coals are an extraordinary large sink for carbon in the geosphere. In Munindalen near Pyramiden (Dickson Land, Svalbard), low mature middle to upper Devonian strata (Mimerdalen Subgroup) crop out, which bear well recognizable terrestrial coal seams. Here, we report new geochemical and petrographical data of this ancient coal and compare them with younger coals of Svalbard from the Carboniferous, a period when land-dwelling plants started to rule the terrestrial realm. Similar to other Devonian cannel coals (highly bituminous terrestrial coals), the Munindalen coals are rich in spores and were most likely formed by early lycopsid trees in a near-equatorial setting. Geochemical data are in line with a predominantly liptinite-related origin of the coaly matter and the coals demonstrate a high hydrocarbon (oil) generation potential [hydrogen index: 570 mg hydrocarbons (HC)/g total organic carbon (TOC)]. Biomarkers support a terrestrial plant origin of the coals and demonstrate the geochemical simplicity of these very early terrestrial plants (e.g., by the lack of specific diterpanes known from modern plants and the occurrence of sterane-related simple pregnanes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Georeferenced data from Norsk Polarinstitutt (http://data.npolar.no)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horn G (1928) Beiträge zur Kenntnis der Kohle von Svalbard. Skrifter om Svalbard og Ishavet, Det Kongelige Department, Oslo

  2. Horn G (1941) Petrology of a Middle Devonian Cannel coal from Spitsbergen. Norske geol tidsskr 21:13–19

    Google Scholar 

  3. Vogt T (1941) Geology of a Middle Devonian Cannel coal from Spitsbergen. Norskr geol tidsskr 21:1–12

    Google Scholar 

  4. Berry CM, Marshall JEA (2015) Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard. Geology 43:1043–1046

    Article  Google Scholar 

  5. van Krevelen DW (1993) Coal-typology, physics, chemistry, constituents. Elsevier, Amsterdam

    Google Scholar 

  6. Vigran JO (1964) Spores from Devonian deposits, Mimerdalen, Spitsbergen. Norsk Polarinstitut Skrifter 132:1–32

    Google Scholar 

  7. Goodarzi F, Goodbody Q (1990) Nature and depositional environment of Devonian coals from western Melville island, Arctic Canada. Int J Coal Geol 14:175–196

    Article  Google Scholar 

  8. Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell publishing, Oxford

    Google Scholar 

  9. Armstroff A, Wilkes H, Schwarzbauer J, Littke R, Horsfield B (2006) Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age. Palaeogeogr Palaeoclimatol Palaeoecol 240:253–274

    Article  Google Scholar 

  10. Piepjohn K, Dallmann WK (2014) Stratigraphy of the uppermost Old Red Sandstone of Svalbard (Mimerdalen Subgroup). Pol Res 33:19998

    Article  Google Scholar 

  11. Brinkmann L (1997) Geologie des östlichen zentralen Dickson Landes und Palynologie der Mimerdalen Formation (Devon), Spitzbergen. Diploma-Thesis. Westfälische Wilhelms-Universität Münster. In German

  12. Michaelsen B, Piepjohn K, Brinkmann L (1997) Struktur und Entwicklung der svalbardischen Mimerelva Synkline im zentralen Dickson Land, Spitzbergen. Münster Forsch Geol Paläont 82:203–214

    Google Scholar 

  13. Schweitzer HJ (1999) Die Devonfloren Spitzbergens. (The Devonian flora of Spitsbergen). Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  14. Piepjohn K, Brinkmann L, Grewing A, Kerp H (2000) New data on the age of the uppermost ORS and the lowermost post-ORS strata in Dickson Land (Spitsbergen) and implications for the age of the Svalbardian deformation. In: Friend PF, Williams BPJ (eds) New perspectives on the Old Red Sandstone. Geological Society of London Special Publications, pp 603–609

  15. Blumenberg M, Heunisch C, Lückge A, Scheeder G, Wiese F (2016) Photic zone euxinia in the central Rhaetian Sea prior the Triassic-Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 461:55–64

    Article  Google Scholar 

  16. ICCP (1998) The new vitrinite classification (ICCP System 1994). Fuel 77:349–358

    Google Scholar 

  17. ICCP (2001) The new inertinite classification (ICCP System 1994). Fuel 80:459–471

    Article  Google Scholar 

  18. Pickel W, Kus J, Flores D, Kalaitzidis S, Christanis K, Cardott BJ, Misz-Kennan M, Rodrigues S, Hentschel A, Hamor-Vido M, Crosdale P, Wagner N (2017) Classification of liptinite—ICCP System 1994. Int J Coal Geol 169:40–61

    Article  Google Scholar 

  19. Sýkorová I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D (2005) Classification of huminite—ICCP System 1994. Int J Coal Geol 62:85–106

    Article  Google Scholar 

  20. Taylor G, Teichmüller M, Davis A, Diessel C, Littke R, Robert P (1998) Organic petrology. Gebrüder Borntraeger, Berlin

    Google Scholar 

  21. Abdullah WH, Murchison D, Jones JM, Telnaes N, Gjelberg J (1988) Lower Carboniferous coal depositional environments on Spitsbergen. Svalbard Org Geochem 13:953–964

    Article  Google Scholar 

  22. van Koeverden JH, Karlsen DA, Schwark L, Chpitsglouz A, Backer-Owe K (2010) Oil-prone lower Carboniferous coals in the Norwegian Barents Sea: implications for a Palaeozoic petroleum system. J Petrol Geol 33:155–182

    Article  Google Scholar 

  23. Petersen HI (2006) The petroleum generation potential and effective oil window of humic coals related to coal composition and age. Int J Coal Geol 67:221–248

    Article  Google Scholar 

  24. Sykes R, Snowdon LR (2002) Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Org Geochem 33:1441–1455

    Article  Google Scholar 

  25. Peters-Kottig W, Strauss H, Kerp H (2006) The land plant δ13C record and plant evolution in the Late Palaeozoic. Palaeogeogr Palaeoclimatol Palaeoecol 240:237–252

    Article  Google Scholar 

  26. Whiticar MJ (1996) Stable isotope geochemistry of coals, humic kerogens and related natural gases. Int J Coal Geol 32:191–215

    Article  Google Scholar 

  27. Strauss H, Peters-Kottig W (2003) The Paleozoic to Mesozoic carbon cycle revisited: the carbon isotopic composition of terrestrial organic matter. Geochem Geophys Geosyst 4:1083

    Article  Google Scholar 

  28. Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  Google Scholar 

  29. ten Haven HL, De Leeuw JW, Rullkötter J, Sinninghe Damste JS (1987) Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature 330:641–643

    Article  Google Scholar 

  30. Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359

    Article  Google Scholar 

  31. Ourisson G, Rohmer M (1992) Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids. Acc Chem Res 25:403–408

    Article  Google Scholar 

  32. Armstroff A (2004) Geochemical Significance of Biomarkers in Paleozoic Coals, PhD-Thesis, RWTH Aachen University

  33. Peters-Kottig W (2003) Untersuchungen zur Kohlenstoffisotopenzusammensetzung von terrestrischem organischen Material des jüngeren Paläozoikums. PhD-Thesis. University of Muenster, Münster

  34. Huang W-Y, Meinschein WG (1979) Sterols as ecological indicators. Geochim Cosmochim Acta 43:739–745

    Article  Google Scholar 

  35. Schulze T, Michaelis W (1990) Structure and origin of terpenoid hydrocarbons in some German coals. Org Geochem 16:1051–1058

    Article  Google Scholar 

  36. Sheng G, Simoneit BRT, Leif RN, Chen X, Fu J (1992) Tetracyclic terpanes enriched in Devonian cuticle humic coals. Fuel 71:523–532

    Article  Google Scholar 

  37. Alexander R, Kagi RI, Noble R, Volkman JK (1984) Identification of some bicyclic alkanes in petroleum. Org Geochem 6:63–70

    Article  Google Scholar 

  38. Killops S, Stoddart D, Mills N (2014) Inferences for sources of oils from the Norwegian Barents Sea using statistical analysis of biomarkers. Org Geochem 76:157–166

    Article  Google Scholar 

  39. Noble RA, Alexander R, Kagi RI, Knox J (1985) Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochim Cosmochim Acta 49:2141–2147

    Article  Google Scholar 

  40. Tewari A, Dutta S, Sarkar T (2017) Biomarker signatures of Permian Gondwana coals from India and their palaeobotanical significance. Palaeogeogr Palaeoclimatol Palaeoecol 468:414–426

    Article  Google Scholar 

  41. Disnar JR, Harouna M (1994) Biological origin of tetracyclic diterpanes, n-alkanes and other biomarkers found in lower carboniferous Gondwana coals (Niger). Org Geochem 21:143–152

    Article  Google Scholar 

  42. Kashirtsev VA, Moskvin VI, Fomin AN, Chalaya ON (2010) Terpanes and steranes in coals of different genetic types in Siberia. Russ Geol Geophys 51:404–411

    Article  Google Scholar 

  43. Romero-Sarmiento M-F, Riboulleau A, Vecoli M, Laggoun-Défarge F, Versteegh GJM (2011) Aliphatic and aromatic biomarkers from Carboniferous coal deposits at Dunbar (East Lothian, Scotland): Palaeobotanical and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 309:309–326

    Article  Google Scholar 

  44. Norwegian Petroleum Directorate (2017) The North Barents Sea: geological assessment of petroleum resources in Eastern parts of Barents Sea North. Report. http://www.npd.no/en/Publications/Reports/Geological-assessment-of-petroleum-resources---Barents-Sea-north-2017/. Accessed 2 June 2017

Download references

Acknowledgements

We thank Malte Jochmann and Stein Henningsen for excellent cooperation during field work. Petra Adam, Monika Weiß and Sylvia Kramer are thanked for laboratory assistance. Samples were obtained during CASE 17-2, which was a geological expedition within the CASE research program (CASE = Circum Arctic Structural Events) of the German Federal Institute for Geosciences and Natural Resources (BGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Blumenberg.

Additional information

This article was selected from the third Circum-Arctic Structural Event workshop which was held in Hannover (Germany) in March 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenberg, M., Weniger, P., Kus, J. et al. Geochemistry of a middle Devonian cannel coal (Munindalen) in comparison with Carboniferous coals from Svalbard. Arktos 4, 1–8 (2018). https://doi.org/10.1007/s41063-018-0038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0038-y

Keywords

Navigation