Skip to main content

Advertisement

Log in

Late Holocene shift towards enhanced oceanic variability in a high-Arctic Svalbard fjord (79°N) at 2500 cal. yr BP

  • Original Article
  • Published:
arktos

Abstract

Paleoclimate records are crucial for understanding current changes taking place in the Arctic, e.g., the amplified warming and associated changes in sea-ice cover. However, paleoclimate and -oceanographic reconstructions, especially from the high Arctic, are scarce. Here, we present a reconstruction of sea surface and paleoenvironmental conditions from a Holocene marine sediment core collected from a high-Arctic fjord, Isvika Bay, Nordauslandet, Svalbard (79°N). Our proxies include qualitative diatom assemblage data [focusing on the Marginal Ice Zone (MIZ) taxa], a quantitative diatom-based August sea surface temperature (aSST) reconstruction, sediment grain-size distribution, and ice-rafted debris (IRD) spanning the period from 4200 cal. yr BP to the Little Ice Age (LIA) at ca. 200 cal. yr BP. The results reveal cold and stable, glacier-proximal conditions for the beginning of the late Holocene (from 4200 to 2500 cal. yr BP). Then, at 2500 cal. yr BP, the environment shifted into distinctly more fluctuating conditions, where colder and warmer aSSTs alternated in a glacier-distal environment. During the latter part of the late Holocene, sea-ice cover was extensive, yet variable, negatively co-varying with aSST. Based on our diatom data, we observe a clear increase in the influence of Atlantic water in Isvika Bay during the last ca. 600 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersen C, Koç N, Jennings A, Andrews J (2004a) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19:PA2003. doi:10.1029/2002PA000873

  2. Andersen C, Koç N, Moros M (2004) A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms. Quat Sci Rev 23:2155–2166

    Article  Google Scholar 

  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  4. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Article  Google Scholar 

  5. Berner KS, Koç N, Divine D, Godtliebsen F, Moros M (2008) A decadal-scale Holocene sea surface temperature record from the subpolar North Atlantic constructed using diatoms and statistics and its relation to other climate parameters. Paleoceanography 23:PA2210. doi:10.1029/2006PA001339

  6. Berner KS, Koç N, Godtliebsen F, Divine D (2011) Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing. Paleoceanography 26:PA2220. doi:10.1029/2010PA002002

  7. Blake W Jr (1961) Radiocarbon dating of raised beaches in Nordaustlandet, Spitsbergen. In: Raasch GO (ed) The geology of the Arctic. University of Toronto Press, Toronto, pp 133–145

    Google Scholar 

  8. Blake W Jr (1989) Radiocarbon dating by accelerator mass spectrometry: a contribution to the chronology of Holocene events in Nordaustlandet, Svalbard. Geogr Ann Ser A Phys Geogr 71:59–74

    Article  Google Scholar 

  9. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  10. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720–730

    Article  Google Scholar 

  11. Burman P, Chow E, Schrader H (1994) A cross-validatory method for dependent data. Biometrika 81:351–358

    Article  Google Scholar 

  12. Caissie BA (2012) Diatoms as Recorders of Sea Ice in the Bering and Chukchi Seas: proxy development and application. Dissertation, University of Massachusetts

  13. De Sève MA (1999) Transfer function between surface sediment diatom assemblages and sea-surface temperature and salinity of the Labrador Sea. Mar Micropaleontol 36:249–267

    Article  Google Scholar 

  14. Dethleff D (2010) Dense water formation in the Laptev Sea flaw lead. J Geophys Res 115:C12022. doi:10.1029/2009JC006080

    Article  Google Scholar 

  15. Ebbesen H, Hald M, Eplet TH (2007) Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic. Quat Sci Rev 26:1999–2011

    Article  Google Scholar 

  16. Hald M, Ebbesen H, Forwick M, Godtliebsen F, Khomenko L, Korsun S, Olsen L, Vorren T (2004) Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quat Sci Rev 23:2075–2088

    Article  Google Scholar 

  17. Hasle GR, Syvertsen EE (1996) Marine diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, Califonia, pp 5–385

    Google Scholar 

  18. Henshaw PC Jr, Merril RT (1980) Magnetic and chemical changes in marine sediments. Rev Geophys Space Phys 18:483–504

    Article  Google Scholar 

  19. Hormes A, Akçar N, Kubik PW (2011) Cosmogenic radionuclide dating indicates ice-sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas 40:636–649

    Article  Google Scholar 

  20. Jennings A, Andrews JT, Wilson L (2011) Holocene environmental evolution of the SE Greenland Shelf north and south of the Denmark Strait: irminger and East Greenland current interactions. Quat Sci Rev 30(7–8):980–998

    Article  Google Scholar 

  21. Jernas P, Klitgaard-Kristensen D, Husum K, Wilson L, Koç N (2013) Palaeoenvironmental changes of the last two millennia on the western and northern Svalbard shelf. Boreas 42:236–255

    Article  Google Scholar 

  22. Jiang H, Seidenkrantz M-S, Knudsen KL, Eiríksson J (2001) Diatom surface sediment assemblages around Iceland and their relationship to oceanic environmental variables. Mar Micropaleontol 41:73–96

    Article  Google Scholar 

  23. Jiang H, Seidenkrantz M-S, Knudsen K, Eiríksson J (2002) Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf. Holocene 12:137–147

    Google Scholar 

  24. Justwan A, Koç N, Jennings AE (2008) Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. Quat Sci Rev 27:1571–1582

    Article  Google Scholar 

  25. Kaakinen A, Salonen VP, Kubischta F, Eskola KO, Oinonen M (2009) Weichselian glacial stage in Murchinsonfjorden, Nordaustlandet, Svalbard. Boreas 38:718–729

    Article  Google Scholar 

  26. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, Arctic Lakes 2 k Project Members (2009) Recent warming reverses long-term arctic cooling. Science 325:1236–1239

    Article  Google Scholar 

  27. Koç N, Jansen E, Haflidason H (1993) Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14-Ka based on diatoms. Quat Sci Rev 12:115–140

    Article  Google Scholar 

  28. Koç N, Klitgaard-Kristensen D, Hasle K, Forsberg C, Solheim A (2002) Late glacial palaeoceanography of Hinlopen Strait, northern Svalbard. Polar Res 21:307–314

    Article  Google Scholar 

  29. Koç Karpuz N, Schrader H (1990) Surface sediment diatom distribution and holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea. Paleoceanography 5:557–580

    Article  Google Scholar 

  30. Krawczyk D, Witkowski A, Moros M, Lloyd J, Kuijpers A, Kierzek A (2010) Late-holocene diatom-inferred reconstruction of temperature variations of the West Greenland Currents from Disko Bugt, central West Greenland. The Holocene 20(5):659–666

    Article  Google Scholar 

  31. Krawczyk DW, Witkowski A, Waniek JJ, Wroniecki M, Harff J (2014) Description of diatoms from the Southwest to West Greenland coastal and open marine waters. Polar Biol 37:1589–1606

    Article  Google Scholar 

  32. Krawczyk DW, Witkowski A, Moros M, Lloyd JM, Høyer JL, Miettinen A, Kuijpers A (2016) Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set. Paleoceanography 32:18–40

    Article  Google Scholar 

  33. Kristensen D, Rasmussen TL, Koç N (2013) Palaeoceanographic changes in the northern Barents Sea during the last 16,000 years—new constraints on the last deglaciation of the Svalbard-Barents Sea Ice Sheet. Boreas 42:798–813

    Article  Google Scholar 

  34. Kubischta F, Knudsen KL, Ojala AEK, Salonen V-P (2011) Holocene benthic foraminiferal record from a High-Arctic Fjord, Nordaustlandet, Svalbard. Geogr Ann Ser A Phys Geogr 93A:227–242

    Article  Google Scholar 

  35. Leeman A, Niessen F (1994) Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. Holocene 4(3):259–268

    Article  Google Scholar 

  36. Ligowski R, Godlewski M, Łukowski A (1992) Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell Sea pack ice. Polar Biol 5:9–20

    Google Scholar 

  37. Luoto TP, Nevalainen L, Kubischta F, Kultti S, Knudsen KL, Salonen VP (2011) Late Quaternary ecological turnover in high arctic Lake Einstaken, Nordaustlandet, Svalbard (80°N). Geogr Ann Ser A Phys Geogr 93:337–354

    Article  Google Scholar 

  38. Miettinen A, Divine D, Koç N, Godtliebsen F, Hall IR (2012) Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8 kyr. J Clim 25:4205–4219

    Article  Google Scholar 

  39. Miettinen A, Divine DV, Husum K, Koç N, Jennings A (2015) Exceptional ocean surface conditions on the SE Greenland shelf during the medieval climate anomaly. Paleoceanography 30:1657–1674

    Article  Google Scholar 

  40. Miller GH, Brigham-Grette J, Alley RB, Anderson L, Bauch HA, Douglas MSV, Edwards ME, Elias SA, Finney BP, Fitzpatrick JJ, Funder SV, Herbert TD, Hinzman LD, Kaufman DS, MacDonald GM, Polyak L, Robock A, Serreze MC, Smol JP, Spielhagen R, White JWC, Wolfe AP, Wolff EW (2010) Temperature and precipitation history of the Arctic. Quat Sci Rev 29:1679–1715

  41. Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14

    Article  Google Scholar 

  42. Moskalik M, Pastusiak T, Tegowski J (2012) Multibeam Bathymetry and slobe stability of Isvika Bay, Murchisonfjorden, Nordaustlandet. Mar Geod 35:389–398

    Article  Google Scholar 

  43. North Greenland Ice Core Project Members (2004) High-resolution record of Northern Hemisphere climate extending into the Last interglacial period. Nature 431:147–151

    Article  Google Scholar 

  44. Ojala AEK, Salonen V, Moskalik M, Kubischta F, Oinonen M (2014) Holocene sedimentary environment of a High-Arctic fjord in Nordaustlandet, Svalbard. Pol Polar Res 35:73–98

    Google Scholar 

  45. Pearce C, Seidenkrantz MS, Kuijpers A, Massé G, Reynisson NF, Kristiansen SM (2013) Ocean led at the termination of the Younger Dryas cold spell. Nat Commun 4:1664

    Article  Google Scholar 

  46. Pearce C, Seidenkrantz M-S, Kuijpers A, Reynisson NF (2014) A multi-proxy reconstruction of oceanographic conditions around the Younger Dryas–Holocene transitions in Placentia Bay, Newfoundland. Mar Micropaleontol 112:39–49

    Article  Google Scholar 

  47. Piechura J, Walczowski W (1995) The arctic front: structure and dynamics. Oceanologia 37:47–73

    Google Scholar 

  48. Pohjola VA, Kankaanpää P, Moore JC, Pastusiak T (2011) The International Polar Year project “KINNVIKA”-Arctic warming and impact research at 80°N. Geogr Ann Ser A Phys Geogr 93:201–208

    Article  Google Scholar 

  49. Polyak L, Alley RB, Andrews JT, Brigham-Grette J, Cronin TM, Darby DA, Dyke AS, Fitzpatrick JJ, Funder S, Holland M, Jennings AE, Miller GH, O’Regan M, Savelle J, Serreze M, St. John K, White JWC, Wolff E (2010) History of sea ice in the Arctic. Quat Sci Rev 29:1757–1778

  50. Rasmussen TL, Thomsen E, Ślubowska MA, Jessen S, Solheim A, Koç N (2007) Paleoceanographic evolution of the SW Svalbard margin (76° N) since 20,000 C-14 year BP. Quat Res 67:100–114

    Article  Google Scholar 

  51. Rasmussen TL, Forwick M, Mackensen A (2012) Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Mar Micropaleontol 94–95:80–90

    Article  Google Scholar 

  52. Reimer PJ et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Article  Google Scholar 

  53. Reimer PJ et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887

    Article  Google Scholar 

  54. Schimmelmann A, Lange CB, Schieber J, Francus P, Ojala AEK, Zolitschka B (2016) Varves in marine sediments: a review. Earth Sci Rev 159:215–246

    Article  Google Scholar 

  55. Schrader HJ, Gersonde R (1978) Diatoms and Silicoflagellates. Micropaleontological counting methods and techniques-an exercise on an eight meters section of the lower Pliocene of Capo Rossello. Utrecht Micropaleontol Bull 17:129–176

    Google Scholar 

  56. Ślubowska M, Koç N, Rasmussen T, Klitgaard-Kristensen D (2005) Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20:PA4014. doi:10.1029/2005PA001141

  57. Ślubowska-Wodengen M, Rasmussen TL, Koç N, Klitgaard-Kristensen D, Nilsen F, Solheim A (2007) Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quat Sci Rev 26:463–478

    Article  Google Scholar 

  58. Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by Warm Atlantic Water. Science 331:450–453

    Article  Google Scholar 

  59. ter Braak CJF, Juggins S (1993) Weighted averaging partial least-squares regression (WA-PLS)—an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502

    Article  Google Scholar 

  60. Trachsel M, Telford RJ (2016) Technical note: estimating unbiased transfer-function performances in spatially structured environments. Clim Past 12:1215–1223

    Article  Google Scholar 

  61. van der Bilt WGM, Bakke J, D`Andrea WJ, Vasskog K, Bradley RS, Ólafsdóttir S (2015) Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quat Sci Rev 126:201–218

    Article  Google Scholar 

  62. van der Bilt WGM, D’Andrea WJ, Bakke J, Balascio NL, Werner JP, Gjerde M, Bradley RS (2016) Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard. Quat Sci Rev. doi:10.1016/j.quascirev.2016.10.006

    Google Scholar 

  63. von Quillfeldt C, Ambrose W, Clough L (2003) High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol 26:806–818

    Article  Google Scholar 

  64. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  65. Weckström K, Massé G, Collins LG, Hanhijärvi S, Bouloubassi I, Sicre MA, Seidenkrantz M-S, Schmidt S, Andersen TJ, Andersen ML, Hill B, Kuijpers A (2013) Evaluation of the sea ice proxy IP25 against observational and diatom proxy data in the SW Labrador Sea. Quat Sci Rev 79:53–62

    Article  Google Scholar 

  66. Werner K, Spielhagen RF, Bauch D, Fass HC, Kandiano E, Zamelczyk K (2011) Atlantic Water advection to the eastern Fram Strait—multiproxy evidence for late Holocene variability. Palaeogeogr Palaeoclimatol Palaeoecol 308:264–276

    Article  Google Scholar 

  67. Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28:283–295

    Article  Google Scholar 

  68. Werner K, Müller J, Husum K, Spielhagen RF, Kandiano ES, Polyak L (2016) Holocene sea subsurface and surface water masses in the Fram Strait—comparisons of temperature and sea-ice reconstructions. Quat Sci Rev 147:194–209

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Captain Tadeusz Pastusiak and the crew of MS Horyzont II. Coring was conducted as part of the international IPY-Kinnvika project that was funded by the Academy of Finland (Project No. 1,116,709). We thank M. Kinnunen for the grain-size distribution analysis and K. Pauli for valuable discussions. M. Oksman acknowledges funding from the Finnish Graduate School in Geology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimmi Oksman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksman, M., Weckström, K., Miettinen, A. et al. Late Holocene shift towards enhanced oceanic variability in a high-Arctic Svalbard fjord (79°N) at 2500 cal. yr BP. Arktos 3, 4 (2017). https://doi.org/10.1007/s41063-017-0032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41063-017-0032-9

Keywords

Navigation