Skip to main content
Log in

Size-Dependent Pull-In Instability of Electrically Actuated Functionally Graded Nano-Beams Under Intermolecular Forces

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Pull-in instability of a cantilever beam-type nano-actuator made of functionally graded material is investigated using the strain gradient theory under the influence of electrostatic and intermolecular forces. Differential quadrature method is used to solve the nonlinear governing equation of nano-beam; the size effects, different materials and different volume fractions are examined. Results obtained from this model and numerical solution method are in good agreement with the experimental results mentioned in the references. Besides, the results demonstrate that size effect and amount of volume fraction have a substantial effect on the pull-in instability behavior of beam-type nano-actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abadyan M, Novinzadeh A, Kazemi A (2010) Approximating the effect of the Casimir force on the instability of electrostatic nano-cantilevers. Phys Scr 81:55–68

    Article  MATH  Google Scholar 

  • Abbasnejad B, Rezazadeh G, Shabani R (2013) Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech Solida Sin 26:427–440

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2013) Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2015) Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Compos Struct 134:294–301

    Article  Google Scholar 

  • Ansari R, Rouhi H, Arash B (2013) Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach. Iran J Sci Technol Trans Mech Eng 37:91–105

    Google Scholar 

  • Ansari R, Shojaei MF, Gholami R (2016) Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method. Compos Struct 136:669–683

    Article  Google Scholar 

  • Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105

    Article  MathSciNet  Google Scholar 

  • Batra R, Porfiri M, Spinello D (2007) Effects of Casimir force on pull-in instability in micromembranes. Europhys Lett (EPL) 77:20010

    Article  Google Scholar 

  • Beni YT (2012) “Use of augmented continuum theory for modeling the size dependent material behavior of nano-actuators. Iran J Sci Technol Trans Mech Eng 36:41

    Google Scholar 

  • Beni YT, Abadyan M (2013) Size-dependent pull-in instability of torsional nano-actuator. Phys Scr 88:055801

    Article  MATH  Google Scholar 

  • Beni YT, Abadyan M (2013b) Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force. Int J Mod Phys B 27:1350083.doi: http://dx.doi.org/10.1142/S0217979213500835

  • Beni YT, Abadyan M, Noghrehabadi A (2011) Investigation of size effect on the pull-in instability of beam-type NEMS under van der Waals attraction. Procedia Eng 10:1718–1723

    Article  Google Scholar 

  • Beni YT, Karimipour I, Abadyan M (2015) Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory. Appl Math Model 39:2633–2648

    Article  MathSciNet  Google Scholar 

  • Bordag M, Mohideen U, Mostepanenko VM (2001) New developments in the Casimir effect. Phys Rep 353:1–205

    Article  MathSciNet  MATH  Google Scholar 

  • Civalek Ö (2004) Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng Struct 26:171–186

    Article  Google Scholar 

  • Dashtaki PM, Beni YT (2014) Effects of Casimir force and thermal stresses on the buckling of electrostatic nanobridges based on couple stress theory. Arab J Sci Eng 39:5753–5763

    Article  Google Scholar 

  • Fleck N, Hutchinson J (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    Article  MATH  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Gholami R, Ansari R, Rouhi H (2015) Studying the effects of small scale and Casimir force on the non-linear pull-in instability and vibrations of FGM microswitches under electrostatic actuation. Int J Non-linear Mech 77:193–207

    Article  Google Scholar 

  • Gusso A, Delben GJ (2008) Dispersion force for materials relevant for micro-and nanodevices fabrication. J Phys D Appl Phys 41:175405

    Article  Google Scholar 

  • Hu Y-C (2006) Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads. J Micromech Microeng 16:648

    Article  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36:1875–1884

    Article  MathSciNet  MATH  Google Scholar 

  • Jia XL, Zhang SM, Ke LL, Yang J, Kitipornchai S (2014) Thermal effect on the pull-in instability of functionally graded micro-beams subjected to electrical actuation. Compos Struct 116:136–146

    Article  Google Scholar 

  • Jia XL, Ke LL, Feng CB, Yang J, Kitipornchai S (2015) Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change. Compos Struct 133:1137–1148

    Article  Google Scholar 

  • Koizumi M (1993) Concept of FGM. Ceram Trans Func Grad Mater 34:3–10

    Google Scholar 

  • Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47:487–498

    Article  MathSciNet  MATH  Google Scholar 

  • Lam DC, Chong A (1999) Indentation model and strain gradient plasticity law for glassy polymers. J Mater Res 14:3784–3788

    Article  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Lamoreaux SK (2005) The Casimir force: background, experiments, and applications. Rep Prog Phys 68:201

    Article  Google Scholar 

  • Malihi S, Beni YT, Golestanian H (2016) Analytical modeling of dynamic pull-in instability behavior of torsional nano/micromirrors under the effect of Casimir force. Opt Int J Light Electron Opt 127:4426–4437

    Article  Google Scholar 

  • Miandoab EM, Yousefi-Koma A, Pishkenari HN (2014) Poly silicon nanobeam model based on strain gradient theory. Mech Res Commun 62:83–88

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi H, Mahzoon M (2014) Investigating thermal effects in nonlinear buckling analysis of micro beams using modified strain gradient theory. Iran J Sci Technol Trans Mech Eng 38:303–320

    Google Scholar 

  • Mohammadi-Alasti B, Rezazadeh G, Borgheei A-M, Minaei S, Habibifar R (2011) On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos Struct 93:1516–1525

    Article  Google Scholar 

  • Mousavi T, Bornassi S, Haddadpour H (2013) The effect of small scale on the pull-in instability of nano-switches using DQM. Int J Solids Struct 50:1193–1202

    Article  Google Scholar 

  • Nami M, Janghorban M (2015) Free vibration of functionally graded size dependent nanoplates based on second order shear deformation theory using nonlocal elasticity theory. Iran J Sci Technol Trans Mech Eng 39:15–28

    Google Scholar 

  • Nayfeh AH, Younis MI, Abdel-Rahman EM (2007) Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn 48:153–163

    Article  MATH  Google Scholar 

  • Nix W (1989) Mechanical properties of thin films. Metall Trans A 20:2217–2245

    Article  Google Scholar 

  • Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6:107–118

    Article  Google Scholar 

  • Pelesko JA, Bernstein DH (2002) Modeling Mems and Nems. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Rafieipour H, Lotfavar A, Masroori A (2013) Ananlytical approximate solution for nonlinear vibration of microelecromechanical system using He’s frequency amplitude formulation. Iran J Sci Technol Trans Mech Eng 37:83

    Google Scholar 

  • Rahaeifard M, Kahrobaiyan M, Asghari M, Ahmadian M (2011) Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens Actuators A 171:370–374

    Article  MATH  Google Scholar 

  • Rezazadeh G, Tahmasebi A, Zubstov M (2006) Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsyst Technol 12:1163–1170

    Article  Google Scholar 

  • Rokni H, Seethaler RJ, Milani AS, Hosseini-Hashemi S, Li X-F (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens Actuators A 190:32–43

    Article  Google Scholar 

  • Sedighi HM, Daneshmand F, Abadyan M (2015) Modeling the effects of material properties on the pull‐in instability of nonlocal functionally graded nano-actuators. ZAMM J Appl Math Mech 95:385–400

    Google Scholar 

  • Shojaeian M, Beni YT (2015) Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens Actuators A 232:49–62

    Article  Google Scholar 

  • Shojaeian M, Beni YT, Ataei H (2016) Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut 118:62–71

    Article  Google Scholar 

  • Shu C (2000) Differential quadrature and its application in engineering. Springer, London

    Book  MATH  Google Scholar 

  • Shu C, Du H (1997) A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates. Int J Solids Struct 34:837–846

    Article  MATH  Google Scholar 

  • Şimşek M, Kocatürk T, Akbaş ŞD (2013) Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory. Compos Struct 95:740–747

    Article  Google Scholar 

  • Taylor G (1968) The coalescence of closely spaced drops when they are at different electric potentials. Proc R Soc Lond A 306:423–434

    Article  Google Scholar 

  • Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. In: Materials science forum, pp 255–260

  • Yamanouti M (1990) Functionally gradient materials forum. In: Proceedings of the first international symposium on functionally gradient materials (FGM ‘90), October 8–9, Hotel Sendai Plaza, Sendai, Japan

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Zamanzadeh M, Rezazadeh G, Jafarsadeghi-poornaki I, Shabani R (2013) Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl Math Model 37:6964–6978

    Article  MathSciNet  Google Scholar 

  • Zand MM, Ahmadian M (2010) Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc Inst Mech Eng Part C J Mech Eng Sci 224:2037–2047

    Article  Google Scholar 

  • Zare J (2014) Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage. J Appl Comput Mech 1:17–25

    Google Scholar 

  • Zeighampour H, Beni YT (2014a) Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Phys E 61:28–39

    Article  Google Scholar 

  • Zeighampour H, Beni YT (2014b) Analysis of conical shells in the framework of coupled stresses theory. Int J Eng Sci 81:107–122

    Article  MathSciNet  Google Scholar 

  • Zeverdejani MK, Beni YT (2013) The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr Appl Phys 13:1566–1576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataei, H., Tadi Beni, Y. Size-Dependent Pull-In Instability of Electrically Actuated Functionally Graded Nano-Beams Under Intermolecular Forces. Iran J Sci Technol Trans Mech Eng 40, 289–301 (2016). https://doi.org/10.1007/s40997-016-0040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0040-6

Keywords

Navigation