Skip to main content

Advertisement

Log in

Effective constitutive relations for simulating CO2 capillary trapping in heterogeneous reservoirs with fluvial sedimentary architecture

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) storage reservoirs commonly exhibit sedimentary architecture that reflects fluvial deposition. The heterogeneity in petrophysical properties arising from this architecture influences the dynamics of injected CO2. We previously used a geocellular modeling approach to represent this heterogeneity, including heterogeneity in constitutive saturation relationships. The dynamics of CO2 plumes in fluvial reservoirs were investigated during and after injection. It was shown that small-scale (centimeter–meter) features play a critical role in capillary trapping processes and have a primary effect on physical- and dissolution-trapping of CO2, and on the ultimate distribution of CO2 in the reservoir. Heterogeneity in saturation functions at that small scale enhances capillary trapping (snap-off), creates capillary pinning, and increases the surface area of the plume. The understanding of these small-scale trapping processes from previous work is used to develop effective saturation relationships that represent, at a larger scale, the integral effect of these processes. Though it is generally not computationally feasible to represent small-scale heterogeneity directly in a typical reservoir simulation, the effective saturation relationships for capillary pressure and relative permeability presented here, along with an effective intrinsic permeability, allow better representation of the total physical trapping at the scale of larger model grid cells, as typically used in reservoir simulations. Thus, the approach diminishes limits on cell size and decreases simulation time in reservoir simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ampomah W, Balch R, Cather M, Rose-Coss D, Dai Z, Heath J, Dewers T, Mozley P (2016) Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: application to Morrow sandstone reservoir. Energy Fuels 30(10):8545–8555. doi:10.1021/acs.energyfuels.6b01888

    Article  Google Scholar 

  • Bachu S (2015) Review of CO2 storage efficiency in deep saline aquifers. Int J Greenh Gas Control 40:188–202. doi:10.1016/j.ijggc.2015.01.007

    Article  Google Scholar 

  • Behzadi H, Alvarado V (2012) Upscaling of upward CO2 migration in 2D system. Adv Water Resour 46:46–54

    Article  Google Scholar 

  • Brooks RJ, Corey AT (1964) Hydraulic properties of porous media. Hydraulic Papers No. 3, Colorado State University, Fort Collins

  • Burdine NT (1953) Relative permeability calculations from pore size distribution data. J Pet Technol 5(3):71–78. doi:10.2118/225-G

    Article  Google Scholar 

  • Carter RD, Tracy GW (1960) An improved method for calculating water influx. Trans Am Inst Min Metall Pet Eng 219:415

    Google Scholar 

  • Chatzis I, Dullien FAL (1983) Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J Colloid Interface Sci 91(1):199–222. doi:10.1016/0021-9797(83)90326-0

    Article  Google Scholar 

  • Corey AT (1954) The interrelation between gas and oil permeabilities. Prod Mon 19(1):38–42

    Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, Berlin. doi:10.1007/978-3-642-75015-1

    Book  Google Scholar 

  • Dai Z, Ritzi R, Huang C, Dominic D, Rubin Y (2004) Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. J Hydrol 294(13):68–86

    Article  Google Scholar 

  • Dai Z, Ritzi R, Dominic D (2005) Improving permeability semivariograms with transition probability models of hierarchical sedimentary architecture derived from outcrop-analog studies. Water Resour Res 41:W07032. doi:10.1029/2004WR003515

    Article  Google Scholar 

  • Dai Z, Viswanathan H, Middleton R, Pan F, Ampomah W, Yang C, Jia W, Xiao T, Lee S, McPherson B, Balch R, Grigg R, White M (2016) CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ Sci Technol 50(14):7546–7554

    Article  Google Scholar 

  • Fenghour A, Wakeham WA, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27(1):31–44

    Article  Google Scholar 

  • Gale J, Abanades JC, Bachu S, Jenkins C (2015) Special issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change, Special report on CO2 capture and storage. Int J Greenh Gas Control 40:1–5. doi:10.1016/j.ijggc.2015.06.019

    Article  Google Scholar 

  • Gershenzon NI, Soltanian MR, Ritzi RW Jr, Dominic DF (2014) Influence of small scale heterogeneity on CO2 trapping processes in deep saline aquifers. Energy Procedia 59:166–173. doi:10.1016/j.egypro.2014.10.363

    Article  Google Scholar 

  • Gershenzon NI, Soltanian MR, Ritzi RW Jr, Dominic DF, Mehnert E, Okwen RT (2015) Influence of small-scale fluvial architecture on CO2 trapping processes in deep brine reservoirs. Water Resour Res 51(10):8240–8256. doi:10.1002/2015WR017638

    Article  Google Scholar 

  • Gershenzon NI, Ritzi RW Jr, Dominic DF, Mehnert E, Okwen RT (2016a) Comparison of CO2 trapping in highly heterogeneous reservoirs with Brooks–Corey and van Genuchten type capillary pressure curves. Adv Water Resour 96:225–236. doi:10.1016/j.advwatres.2016.07.022

    Article  Google Scholar 

  • Gershenzon NI, Ritzi RW Jr, Dominic DF, Mehnert E, Okwen RT, Patterson C (2016b) CO2 trapping in reservoirs with fluvial architecture: sensitivity to heterogeneity in permeability and constitutive relationship parameters for different rock types, in press. J Pet Sci Eng. doi:10.1016/j.petrol.2016.09.008

    Google Scholar 

  • Gershenzon NI, Ritzi Jr RW, Dominic DF, Mehnert E, Okwen RT (2017) Capillary trapping of CO2 in heterogeneous reservoirs during the injection period. Int J Greenh Gas Control 59:13–23

    Article  Google Scholar 

  • Guin A, Ramanathan R, Ritzi RW Jr, Dominic DF, Lunt IA, Scheibe TD, Freedman VL (2010) Simulating the heterogeneity in braided channel belt deposits: 2. Examples of results and comparison to natural deposits. Water Resour Res 46(4):W04516. doi:10.1029/2009WR008112

    Article  Google Scholar 

  • Hassanpour MM, Pyrcz MJ, Deutsch CV (2013) Improved geostatistical models of inclined heterolithic strata for McMurray Formation, Alberta, Canada. AAPG Bull 97(7):1209–1224. doi:10.1306/01021312054

    Article  Google Scholar 

  • Hunt AG, Idriss B (2009) Percolation-based effective conductivity calculations for bimodal distributions of local conductances. Philos Mag. doi:10.1080/14786430802660431

    Google Scholar 

  • Hunt JR, Sitar N, Udell KS (1988) Nonaqueous phase liquid transport and cleanup: 1. Analysis of mechanisms. Water Resour Res 24(8):1247–1258. doi:10.1029/WR024i008p01247

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Killough JE (1976) Reservoir simulation with history-dependent saturation functions. Trans Am Inst Min Metall Pet Eng 261:37–48. doi:10.2118/5106-PA

    Google Scholar 

  • Krevor SC, Pini R, Zuo L, Benson SM (2012) Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour Res 48(2):W02532. doi:10.1029/2011WR010859

    Article  Google Scholar 

  • Krevor SC, Blunt MJ, Benson SM, Pentland CH, Reynolds C, Al-Menhali A, Niu B (2015) Capillary trapping for geologic carbon dioxide storage—from pore scale physics to field scale implications. Int J Greenh Gas Control 40:221–237. doi:10.1016/j.ijggc.2015.04.006

    Article  Google Scholar 

  • Land CS (1968) Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. SPE J 8(2):149–156. doi:10.2118/1942-PA

    Article  Google Scholar 

  • Moortgat J, Amooie MA, Soltanian MR (2016) Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media. Adv Water Resour 96:389–404

    Article  Google Scholar 

  • Mualem Y (1976) New model for predicting hydraulic conductivity of unsaturated porous-media. Water Resour Res 12(3):513–522. doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Oostrom M, White MD, Porse SL, Krevor SCM, Mathias SA (2016) Comparison of relative permeability–saturation–capillary pressure models for simulation of reservoir CO2 injection. Int J Greenh Gas Control 45:70–85. doi:10.1016/j.ijggc.2015.12.013

    Article  Google Scholar 

  • Rabinovich A, Itthisawatpan K, Durlofsky LJ (2015) Upscaling of CO2 injection into brine with capillary heterogeneity effects. J Pet Sci Eng 134:60–75

    Article  Google Scholar 

  • Rabinovich A, Li B, Durlofsky LJ (2016) Analytical approximations for effective relative permeability in the capillary limit. Water Resour Res 52:7645–7667. doi:10.1002/2016WR019234

    Article  Google Scholar 

  • Ramanathan R, Guin A, Ritzi RW Jr, Dominic DF, Freedman VL, Scheibe TD, Lunt IA (2010) Simulating the heterogeneity in braided channel belt deposits: 1. A geometric-based methodology and code. Water Resour Res 46(4):W04515. doi:10.1029/2009WR008111

    Article  Google Scholar 

  • Ritzi RW (2013) Geometric simulation of hierarchical stratal architecture: channel-belt model software manual and methods. Department of Earth and Environmental Sciences, Wright State University, Fairborn

    Google Scholar 

  • Ritzi RW, Dai Z, Dominic DF, Rubin YN (2004) Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture. Water Resour Res 40(3):W03513. doi:10.1029/2003WR002420

    Article  Google Scholar 

  • Ritzi RW, Freiburg JT, Webb ND (2016) Understanding the (co)variance in petrophysical properties of CO2 reservoirs comprising fluvial sedimentary architecture. Int J Greenh Gas Control 51:423–434. doi:10.1016/j.ijggc.2016.05.001

    Article  Google Scholar 

  • Rubin Y (1995) Flow and transport in bimodal heterogeneous formations. Water Resour Res 31:2461–2468

    Article  Google Scholar 

  • Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York

    Google Scholar 

  • Saadatpoor E, Bryant SL, Sepehrnoori K (2010) New trapping mechanism in carbon sequestration. Transp Porous Media 82(1):3–17. doi:10.1007/s11242-009-9446-6

    Article  Google Scholar 

  • Saadatpoor E, Bryant SL, Sepehrnoori K (2011) Effect of upscaling heterogeneous domain on CO2 trapping mechanisms. Energy Procedia 4:5066–5073

    Article  Google Scholar 

  • Sambrook Smith GH, Ashworth GP, Best J, Woodward J, Simpson C (2006) The sedimentology and alluvial architecture of the sandy braided South Saskatchewan River, Canada. Sediment 53:413–434. doi:10.1111/j.1365-3091.2005.00769.x

    Article  Google Scholar 

  • Soltanian MR, Amooie MA, Cole DR, Graham DE, Hosseini SA, Hovorka S, Pfiffner SM, Phelps TJ, Moortgat J (2016) Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int J Greenh Gas Control 54:282–296

    Article  Google Scholar 

  • Spycher N, Pruess K (2005) CO2–H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100°C and up to 600 bar. Geochim Cosmochim Acta 69(13):3309–3320. doi:10.1016/j.gca.2005.01.015

    Article  Google Scholar 

  • Trevisan L, Krishnamurthy PG, Meckel TA (2017a) Impact of 3D capillary heterogeneity and bedform architecture at the sub-meter scale on CO2 saturation for buoyant flow in clastic aquifers. Int J Greenh Gas Control 56(1):237–249

    Article  Google Scholar 

  • Trevisan L, Pini R, Cihan A, Birkholzer JT, Zhou Q, Gonzalez-Nicolas A, Illangasekare TH (2017b) Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments. Water Resour Res 53:485–502

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Vesovic V, Wakeham WA, Olchowy GA, Sengers JV, Watson JTR, Millat J (1990) The transport properties of carbon dioxide. J Phys Chem Ref Data 19(3):763–808

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0C12504. We acknowledge Schlumberger Limited for the donation of ECLIPSE Reservoir Simulation Software. This work was supported in part by the Ohio Supercomputer Center, which provided an allocation of computing time and technical support. We thank Albert Valocchi for useful comments and Daniel Klen for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naum I. Gershenzon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gershenzon, N.I., Ritzi, R.W., Dominic, D.F. et al. Effective constitutive relations for simulating CO2 capillary trapping in heterogeneous reservoirs with fluvial sedimentary architecture. Geomech. Geophys. Geo-energ. Geo-resour. 3, 265–279 (2017). https://doi.org/10.1007/s40948-017-0057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40948-017-0057-3

Keywords

Navigation