Skip to main content
Log in

Low-Cost High-Accuracy QRS Detection for Body Area Network Applications

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

In this study, the low-cost So and Chan (SC) detection method for body area network is combined with the moving average and distance calculation methods for detecting R-waves. The proposed method is compared to existing methods in terms of noise immunity, R-wave detection accuracy, and heartbeat error percent (HBEP). The arrhythmia database provided by the Massachusetts Institute of Technology and Beth Israel Hospital is used. The proposed method effectively reduced HBEP compared to that of the traditional SC method (2.072 vs. 8.518%). R-wave detection verification is conducted using a field-programmable gate array development board, with the obtained R_point data imported into MATLAB for data comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rose, D. P., Ratterman, M. E., Griffin, D. K., Hou, L., Kelley-Loughnane, N., Naik, R. R., et al. (2015). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Transactions on Biomedical Engineering, 62, 1457–1465.

    Article  Google Scholar 

  2. Rodgers, M. M., Pai, V. M., & Conroy, R. S. (2015). Recent advances in wearable sensors for health monitoring. IEEE Sensors J., 15, 3126–3319.

    Article  Google Scholar 

  3. Mukhopadhyay, S. C. (2015). Wearable sensors for human activity monitoring: a review. IEEE Sensors Journal, 15, 1321–1330.

    Article  Google Scholar 

  4. Seeger, C., Laerhoven, K. V., & Buchmann, A. (2015). MyHealthAssistant: An event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network. IEEE Journal of Biomedical and Health Informatics, 19, 752–760.

    Article  Google Scholar 

  5. Wang, L.-H., Chen, T.-Y., Lin, K.-H., Fang, Q., & Lee, S.-Y. (2015). Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications. IEEE Journal of Biomedical and Health Informatics, 19, 247–255.

    Article  Google Scholar 

  6. Xu, M., Wei, S., Qin, X., Zhang, Y., & Liu, C. (2015). Rule-Based method for morphological classification of ST segment in ECG signals. Journal of Medical Biological Engineering, 35, 816–823.

    Article  Google Scholar 

  7. Camara, C., Peris-Lopez, P., Tapiador, J. E., & Suarez-Tangil, G. (2015). Non-invasive multi-modal human identification system combining ECG, GSR, and airflow biosignals. Journal of Medical Biological Engineering, 35, 735–748.

    Article  Google Scholar 

  8. Kim, H., Kim, S., Helleputte, N. V., Artes, A., Konijnenburg, M., Huisken, J., et al. (2014). A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Transactions on Biomedical Circuits and Systems, 8, 257–267.

    Article  Google Scholar 

  9. Sung, W.-T., Chen, J.-H., & Chang, K.-W. (2014). Mobile physiological measurement platform with cloud and analysis functions implemented via IPSO. IEEE Sensors Journal, 14, 111–123.

    Article  Google Scholar 

  10. Tseng, C. H. (2013). Coordinator traffic diffusion for data-intensive Zigbee transmission in real-time electrocardiography monitoring. IEEE Transactions on Biomedical Engineering, 60, 3340–3346.

    Article  Google Scholar 

  11. So, H. H., & Chant, K. L. (1997). Development of QRS detection method for real-time ambulatory cardiac monitor. In: Proceedings of 19th annual international conference IEEE EMBS (pp. 289–292).

  12. Ahlstrom, M. L., & Tompkins, W. J. (1983). Automated high-speed analysis of Holter tapes with microcomputers. In IEEE tranasactions on biomedical engineering (Vol. BME-30, pp. 651–657).

  13. Abdelliche, F., Charef, A., & Ladaci, S. (2014) Complex fractional and complex Morlet wavelets for QRS complex detection. In Proceedings of international conference fractional differentiation applications (ICFDA) (pp. 15).

  14. Min, Y.-J., Kim, H.-K., Kang, Y.-R., & Kim, G.-S. (2013). Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Transactions on Biomedical Circuits and Systems, 7, 426–436.

    Article  Google Scholar 

  15. Salih, S. K., Aljunid, S. A., Aljunid, S. M., Maskon, O., & Yahya, A. (2013). High speed approach for detecting QRS complex characteristics in single lead electrocardiogram signal. In Control system, computing and engineering (ICCSCE) (pp. 391–396).

  16. Ueno, A., Miyashita, O., Yoshida, T., Yamamoto, J., & Lataire, P. (2011). A wearable ECG-HR detector and its application to automatic assist-mode selection of an electrically assisted bicycle. In 2011 Annual international conference IEEE EMBS (pp. 6903–6906).

  17. Lee, R. G., Chou, I. C., Lai, C. C., Liu, M. H., & Chiu, M. J. (2005). A novel QRS detection algorithm applied to the analysis for heart rate variability of patients with sleep apnea. Biomedical Engineering: Applications, Basis and Communications, 17, 258–262.

    Google Scholar 

  18. Craven, D., McGinley, B., Kilmartin, L., & Glavin, M. (2015). Compressed sensing for bioelectric signals: a review. IEEE Journal of Biomedical and Health Informatics, 19, 529–540.

    Article  Google Scholar 

  19. He, D., Chan, S., Zhang, Y., & Yang, H. (2014). Lightweight and confidential data discovery and dissemination for wireless body area networks. IEEE Journal of Biomedical and Health Informatics, 18, 440–448.

    Article  Google Scholar 

  20. Wu, T.-Y., & Lin, C.-H. (2015). Low-SAR path discovery by particle swarm optimization algorithm in wireless body area networks. IEEE Sensors Journal, 15, 928–936.

    Article  Google Scholar 

  21. Pan, R., Chua, D., Pathmasuntharam, J. S., & Xu, Y. P. (2015). An opportunistic relay protocol with dynamic scheduling in wireless body area sensor network. IEEE Sensors Journal, 15, 3743–3750.

    Article  Google Scholar 

  22. Lee, S.-Y., Wang, L.-H., & Fang, Q. (2010). A low power RFID integrated circuits for intelligent healthcare systems. IEEE Transactions on Information Technology in Biomedicine, 14, 1387–1396.

    Article  Google Scholar 

  23. Hasan, M. A., Ibrahimy, M. I., Reaz, M. B., Uddin, M. J., & Hussain, M. S. (2009). VHDL modeling of FECG extraction from the composite abdominal ECG using Atificial Intelligence. In Proceedings of industrial technology, 2009. ICIT 2009 (pp. 1–5).

  24. Dong, C., Ieong, C. I., Vai, M. I., Mak, P. U., Mak, P. I., & Wan, F. (2011). A real-time heart beat detector and quantitative investigation based on FPGA. In Proceedings of 2011 Asia Pacific conference on postgraduate research in microelectronics and electronics (PrimeAsia) (pp. 65–69).

Download references

Acknowledgements

The authors would like to thank the National Chip Implementation Center of Taiwan for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang-Hao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KH., Wu, JH. Low-Cost High-Accuracy QRS Detection for Body Area Network Applications. J. Med. Biol. Eng. 36, 810–819 (2016). https://doi.org/10.1007/s40846-016-0189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0189-x

Keywords

Navigation