Skip to main content
Log in

High-Frequency Stimulation for Parkinson’s Disease and Effects on Pathways in Basal Ganglia Network Model

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Deep brain stimulation of nuclei in the basal ganglia has been recognized as the most effective neurosurgical therapy for hypokinesia in patients with Parkinson’s disease; however, the mechanism underlying its curative effect remains unknown. In addition, the known effects of the two major pathways of the basal ganglia on the thalamus can offer information on optimal targets for further exploration and research. To simulate high-frequency stimulation to the different targets in Parkinson’s disease, a cortico-basal-thalamic network model was constructed based on the biological principles of anatomical structures and utilization of conductance-based models. Taking three different nucleus regions as targets, we simulated and analyzed the diversity of different stimulus durations and periods, along with stimulus efficacy, for the three targets. Then, by adopting different stimulus magnitudes that acted on the three targets, a comparative analysis of the effects of different stimulus magnitudes and targets for the treatment of Parkinson’s disease was performed. To identify the optimal target, different effects of the two major pathways on the thalamus were calculated. The calculation results show that the cortico-basal-thalamic network is reliable, and through the use of feasible models, high-frequency stimulation of the three targets can improve the pathological thalamic rhythmicity. It is shown that the direct pathway excites the thalamus, while the indirect pathway plays a regulatory role in the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shou, T. D. (2001). Neurobiology. Beijing: Higher Education Press.

    Google Scholar 

  2. Gurney, K., Prescott, T. J., Wickens, J. R., & Redgrave, P. (2004). Computational models of the basal ganglia: From robots to membranes. Trends in Neurosciences, 27(8), 453–459.

    Article  Google Scholar 

  3. Sakas, D. E. (2007). Operative neuromodulation: Neural networks surgery (Vol. 2). Vienna: Springer.

    Book  Google Scholar 

  4. Mink, J. W., & Thach, W. T. (1993). Basal ganglia intrinsic circuits and their role in behavior. Current Opinion in Neurobiology, 3(3), 950–957.

    Article  Google Scholar 

  5. Narayanan, S. (2003). The role of cortico-basal-thalamic loops in cognition: a computational model and preliminary results. Neurocomputing, 52–54(02), 605–614.

    Article  Google Scholar 

  6. Groenewegen, H. J. (2003). The basal ganglia and motor control. Neural Plasticity, 10(1–2), 107–120.

    Article  Google Scholar 

  7. Mao, Z. H., & Massaquoi, S. G. (2007). Dynamics of winner-take-all competition in recurrent neural networks with lateral inhibition. IEEE Transactions on Neural Networks, 18(1), 55–69.

    Article  Google Scholar 

  8. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Reviews, 31(2–3), 236–250.

    Article  Google Scholar 

  9. Wichmann, T., & DeLong, M. R. (2012). The basal ganglia. In E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, & A. J. Hudspeth (Eds.), Principles of neural sciences (Vol. 5, pp. 982–998). New York: McGraw-Hill Professional.

    Google Scholar 

  10. Moro, E., & Lang, A. E. (2006). Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Expert Review of Neurotherapeutics, 6(11), 1695–1705.

    Article  Google Scholar 

  11. Apetauerova, D., Ryan, R. K., Ro, S. I., Arle, J., Shils, J., Papavassiliou, E., et al. (2006). End of day dyskinesia in advanced Parkinson’s disease can be eliminated by bilateral subthalamic nucleus or globus pallidus deep brain stimulation. Movement Disorders, 21(8), 1277–1279.

    Article  Google Scholar 

  12. Lozano, A. M., Snyder, B. J., Clement, H., Hutchison, W. D., & Dostrovsky, J. O. (2010). Basal ganglia physiology and deep brain stimulation. Movement Disorders, 25(S1), S71–S75.

    Article  Google Scholar 

  13. Kreitzer, A., & Malenka, R. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.

    Article  Google Scholar 

  14. Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. Journal of Neuroscience, 24(42), 9240–9243.

    Article  Google Scholar 

  15. Boraud, T., Bezard, E., Bioulac, B., & Gross, C. E. (2002). From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Progress in Neurobiology, 66(4), 265–283.

    Article  Google Scholar 

  16. Easton, N., Marshall, F., Fone, K., & Marsden, C. (2007). Atomoxetine produces changes in cortico-basal thalamic loop circuits: assessed by phMRI BOLD contrast. Neuropharmacology, 52(3), 812–826.

    Article  Google Scholar 

  17. Rosin, B., Nevet, A., Elias, S., Rivlin-Etzion, M., Israel, Z., & Bergman, H. (2007). Physiology and pathophysiology of the basal ganglia—thalamo—cortical networks. Parkinsonism Related Disorders, 13(Suppl 3), S437–S439.

    Article  Google Scholar 

  18. Yelnik, J. (2002). Functional anatomy of the basal ganglia. Movement Disorders, 17(S3), S15–S21.

    Article  Google Scholar 

  19. Farries, M. A., Meitzen, J., & Perkel, D. J. (2005). Electrophysiological properties of neurons in the basal ganglia of the domestic chick: conservation and divergence in the evolution of the avian basal ganglia. Journal of Neurophysiology, 94(1), 454–467.

    Article  Google Scholar 

  20. Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D., Benoit-Marand, M., O’Donnell, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. Journal of Neuroscience, 25(40), 9080–9095.

    Article  Google Scholar 

  21. Steephen, J. E., & Manchanda, R. (2009). Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. Journal of Computational Neuroscience, 27(3), 453–470.

    Article  MathSciNet  Google Scholar 

  22. John, J., & Manchanda, R. (2011). Modulation of synaptic potentials and cell excitability by dendritic KIR and KAs channels in nucleus accumbens medium spiny neurons: a computational study. Journal of Biosciences, 36(2), 309–328.

    Article  Google Scholar 

  23. Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4–5), 427–441.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience ,16(3), 211–235.

    Article  Google Scholar 

  25. Migliore, M., Cannia, C., & Canavier, C. C. (2008). A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling. Journal of Neurophysiology, 99(5), 2703–2707.

    Article  Google Scholar 

  26. Wang, L., & Liu, S. Q. (2011). Neural circuit and its functional roles in cerebellar cortex. Neuroscience Bulletin, 27(3), 173–184.

    Article  Google Scholar 

  27. http://www.neuron.yale.edu/neuron/.

  28. http://www.originlab.com/.

  29. Gu, H. G. (2013). Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos, 23(2), 295–308.

    Article  Google Scholar 

  30. Chen, S. D. (2006). Parkinson Disease. Beijing: People’s Medical Publishing House.

    Google Scholar 

  31. Lehéricy, S., Bardinet, E., Tremblay, L., Pf, V. D. M., Pochon, J. B., Dormont, D., et al. (2006). Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex, 16(2), 149–161.

    Article  Google Scholar 

  32. Larson, P. S. (2014). Deep brain stimulation for movement disorders. Journal of the American Society for Experimental Neurotherapeutics, 11(3), 465–474.

    Article  Google Scholar 

  33. Blomstedt, P., Fytagoridis, A., Åström, M., Linder, J., Forsgren, L., & Hariz, M. I. (2012). Unilateral caudal zona incerta deep brain stimulation for Parkinsonian tremor. Parkinsonism & Related Disorders, 18(10), 1062–1066.

    Article  Google Scholar 

  34. Plaha, P., Benshlomo, Y., Patel, N. K., & Gill, S. S. (2006). Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain, 129(1), 1732–1747.

    Article  Google Scholar 

  35. Kitagawa, M., Murata, J., Uesugi, H., Kikuchi, S., Saito, H., Tashiro, K., et al. (2005). Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson’s disease. Neurosurgery, 56(2), 281–289.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 11572127 and 11172103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenquan Liu.

Appendix

Appendix

Here, we describe the direct and indirect pathways internal synaptic connection strengths and external stimuli.

In the direct pathway, synaptic connection strengths are g N(PY→D1)  = 0.02196, g A(PY→D1)  = 1.134, g G(D1→GPi)  = 26.265, g N(DA→D1)  = 0.0488, g A(DA→D1)  = 0.252, and g G(GPi→TH)  = 0.85 μS. External stimuli are I S(DA)  = 0.3 and I S(GPi)  = −3.74 nA. In the indirect pathway, the internal connection strengths are g N(PY→D2)  = 0.03172, g A(PY→D2)  = 0.1638, g N(PY→STN)  = 10.5, g A(PY→STN)  = 3.15, g G(DA→D2)  = 0.34, g G(D2→GPe)  = 0.425, g G(GPe→STN)  = 8.5, g N(STN→GPi)  = 0.0122, g A(STN→GPi)  = 0.063, and g G(GPi→TH)  = 0.425 μS. The external stimuli are I S(DA)  = 0.3, I S(GPe)  = −1.5, and I S(GPi)  = −4.0 nA. For g syn(x→y) , syn indicates the type of synapse and (N, A, G = NMDA, AMPA, GABA), x  y indicates that neuron y was affected by synapses that came from neuron x. I S(X) indicates that neuron X incurred an external stimulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Liu, S., Lu, B. et al. High-Frequency Stimulation for Parkinson’s Disease and Effects on Pathways in Basal Ganglia Network Model. J. Med. Biol. Eng. 36, 704–717 (2016). https://doi.org/10.1007/s40846-016-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0170-8

Keywords

Navigation