Skip to main content
Log in

Full-color flexible laser displays based on random laser arrays

基于随机激光阵列的全色柔性激光显示

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Flexible laser display is a critical component for an information output port in next-generation wearable devices. So far, the lack of appropriate display panels capable of providing sustained operation under rigorous mechanical conditions impedes the development of flexible laser displays with high reliability. Owing to the multiple scattering feedback mechanism, random lasers render high mechanical flexibility to withstand deformation, thus making them promising candidates for flexible display planes. However, the inability to obtain pixelated random laser arrays with highly ordered emissive geometries hinders the application of flexible laser displays in the wearable device. Here, for the first time, we demonstrate a mass fabrication strategy of full-color random laser arrays for flexible display panels. The feedback closed loops can be easily fulfilled in the pixels by multiple scatterings to generate durative random lasing. Due to the sustained operation of random laser, the display performance was well-maintained under mechanical deformations, and as a result, a flexible laser display panel was achieved. Our finding will provide a guidance for the development of flexible laser displays and laser illumination devices.

摘要

柔性激光显示是下一代可穿戴设备的重要组成部分. 到目前为止, 由于缺乏能够在机械条件下稳定工作的显示面板, 柔性激光显示的发展受到了阻碍. 随机激光器得益于多重反馈的工作机制可以承受机械变形, 是实现柔性激光显示面板的理想选择. 然而, 目前缺少一种通用的制备方法将随机激光器精确排布成高度有序的像素化矩阵. 为此我们提出了一种适用于柔性显示面板的全色随机激光阵列的构建策略. 在构建的微激光像素中, 多重散射可以提供持续的光学反馈回路, 使得随机激光可以稳定出射. 在机械变形下激光的性能也可以很好地保持, 从而实现高性能的柔性激光显示面板. 我们的构建策略将为柔性激光显示和激光照明设备的发展提供有益的参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao J, Yan Y, Gao Z, et al. Full-color laser displays based on organic printed microlaser arrays. Nat Commun, 2019, 10: 870

    Article  Google Scholar 

  2. Chellappan KV, Erden E, Urey H. Laser-based displays: a review. Appl Opt, 2010, 49: F79

  3. Zhou Z, Zhao J, Du Y, et al. Organic printed core-shell heterostructure arrays: a universal approach to all-color laser display panels. Angew Chem Int Ed, 2020, 59: 11814–11818

    Article  CAS  Google Scholar 

  4. Park SI, Xiong Y, Kim RH, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977–981

    Article  CAS  Google Scholar 

  5. Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv, 2016, 2: e1501856

  6. Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nat Photon, 2013, 7: 817–824

    Article  CAS  Google Scholar 

  7. White MS, Kaltenbrunner M, Głowacki ED, et al. Ultrathin, highly flexible and stretchable PLEDs. Nat Photon, 2013, 7: 811–816

    Article  CAS  Google Scholar 

  8. Choi M, Bae SR, Hu L, et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci Adv, 2020, 6: eabb5898

  9. Choi MK, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun, 2015, 6: 7149

    Article  CAS  Google Scholar 

  10. Kim TH, Cho KS, Lee EK, et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 2011, 5: 176–182

    Article  CAS  Google Scholar 

  11. Zhong Y, Liao K, Du W, et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano, 2020, 14: 15605–15615

    Article  Google Scholar 

  12. Gao R, Zhao M, Guan Y, et al. Ordered and flexible lanthanide complex thin films showing up-conversion and color-tunable luminescence. J Mater Chem C, 2014, 2: 9579–9586

    Article  CAS  Google Scholar 

  13. Liang J, Chu M, Zhou Z, et al. Optically pumped lasing in microscale light-emitting electrochemical cell arrays for multicolor displays. Nano Lett, 2020, 20: 7116–7122

    Article  CAS  Google Scholar 

  14. Shi L, Meng L, Jiang F, et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv Funct Mater, 2019, 29: 1903648

    Article  Google Scholar 

  15. Fang X, Yang X, Li D, et al. Modification of π-π interaction and charge transfer in ratiometric cocrystals: Amplified spontaneous emission and near-infrared luminescence. Cryst Growth Des, 2018, 18: 6470–6476

    Article  CAS  Google Scholar 

  16. Cloutier SG, Kossyrev PA, Xu J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nat Mater, 2005, 4: 887–891

    Article  CAS  Google Scholar 

  17. Chen R, Tran TTD, Ng KW, et al. Nanolasers grown on silicon. Nat Photon, 2011, 5: 170–175

    Article  CAS  Google Scholar 

  18. Zhang C, Zou CL, Dong H, et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Sci Adv, 2017, 3: e1700225

  19. Dong H, Zhang C, Liu Y, et al. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the Franck-Condon principle. Angew Chem Int Ed, 2018, 57: 3108–3112

    Article  CAS  Google Scholar 

  20. Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26: 6238–6245

    Article  CAS  Google Scholar 

  21. Wang X, Shoaib M, Wang X, et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nano, 2018, 12: 6170–6178

    Article  CAS  Google Scholar 

  22. Lawandy NM. Coherent random lasing. Nat Phys, 2010, 6: 246–248

    Article  CAS  Google Scholar 

  23. Wiersma DS. The physics and applications of random lasers. Nat Phys, 2008, 4: 359–367

    Article  CAS  Google Scholar 

  24. Sun TM, Wang CS, Liao CS, et al. Stretchable random lasers with tunable coherent loops. ACS Nano, 2015, 9: 12436–12441

    Article  CAS  Google Scholar 

  25. Hu HW, Haider G, Liao YM, et al. Wrinkled 2D materials: a versatile platform for low-threshold stretchable random lasers. Adv Mater, 2017, 29: 1703549

    Article  Google Scholar 

  26. Zhu H, Shan CX, Zhang JY, et al. Low-threshold electrically pumped random lasers. Adv Mater, 2010, 22: 1877–1881

    Article  CAS  Google Scholar 

  27. Redding B, Choma MA, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon, 2012, 6: 355–359

    Article  CAS  Google Scholar 

  28. Wang YC, Li H, Hong YH, et al. Flexible organometal-halide perovskite lasers for speckle reduction in imaging projection. ACS Nano, 2019, 13: 5421–5429

    Article  CAS  Google Scholar 

  29. Xu FF, Li YJ, Lv Y, et al. Flat-panel laser displays based on liquid crystal microlaser arrays. CCS Chem, 2020, 2: 369–375

    Article  CAS  Google Scholar 

  30. Lin CH, Zeng Q, Lafalce E, et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv Opt Mater, 2018, 6: 1800474

    Article  Google Scholar 

  31. Wang K, Du Y, Liang J, et al. Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv Mater, 2020, 32: 2001999

    Article  CAS  Google Scholar 

  32. Ren Y, Zhu H, Wu Y, et al. Ultraviolet random laser based on a single GaN microwire. ACS Photonics, 2018, 5: 2503–2508

    Article  CAS  Google Scholar 

  33. Wang Z, Meng X, Kildishev AV, et al. Nanolasers enabled by metallic nanoparticles: from spasers to random Lasers. Laser Photonics Rev, 2017, 11: 1700212

    Article  Google Scholar 

  34. Haider G, Lin HI, Yadav K, et al. A highly-efficient single segment white random laser. ACS Nano, 2018, 12: 11847–11859

    Article  CAS  Google Scholar 

  35. Wang Z, Meng X, Choi SH, et al. Controlling random lasing with three-dimensional plasmonic nanorod metamaterials. Nano Lett, 2016, 16: 2471–2477

    Article  CAS  Google Scholar 

  36. Li X, Wang Y, Sun H, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv Mater, 2017, 29: 1701185

    Article  Google Scholar 

  37. Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 2015, 6: 8056

    Article  CAS  Google Scholar 

  38. Wang Y, Li X, Song J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater, 2015, 27: 7101–7108

    Article  CAS  Google Scholar 

  39. Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696

    Article  CAS  Google Scholar 

  40. Dong H, Zhang C, Liu X, et al. Materials chemistry and engineering in metal halide perovskite lasers. Chem Soc Rev, 2020, 49: 951–982

    Article  CAS  Google Scholar 

  41. Quan LN, García de Arquer FP, Sabatini RP, et al. Perovskites for light emission. Adv Mater, 2018, 30: 1801996

    Article  Google Scholar 

  42. Chen R, Bakti Utama MI, Peng Z, et al. Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires. Adv Mater, 2011, 23: 1404–1408

    Article  Google Scholar 

  43. Luo Z, Chen Y, Wu ST. Wide color gamut LCD with a quantum dot backlight. Opt Express, 2013, 21: 26269–26284

    Article  Google Scholar 

  44. Arsenault AC, Puzzo DP, Manners I, et al. Photonic-crystal full-colour displays. Nat Photon, 2007, 1: 468–472

    Article  CAS  Google Scholar 

  45. Deng R, Qin F, Chen R, et al. Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotech, 2015, 10: 237–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (2017YFA0204502), and the National Natural Science Foundation of China (21790364).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhao YS conceived the concept and planed the project. Zhao YS supervised the research. Hou Y designed and performed the experiments and prepared the materials. Hou Y, Zhou Z, Zhang C, Tang J, Fan Y and Xu FF carried out the optical measurements. Hou Y and Zhao YS analyzed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yong Sheng Zhao  (赵永生).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yue Hou obtained her BSc degree from Lanzhou University in 2016. She is currently working on her PhD degree in Professor Zhao’s group at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). Her research interests are the photonic properties of micro/nanomaterials and their applications as miniaturized photonic devices.

Yong Sheng Zhao received his PhD degree in 2006 at ICCAS. After that, he joined the University of California at Los Angeles (UCLA) and Northwestern University as a postdoctoral fellow. In 2009, he returned to ICCAS as a professor of chemistry. His research interests include the controllable synthesis of low-dimensional organic materials, photophysical and photochemical processes, as well as the fabrication and performance optimization of photonic/optoelectronic devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Zhou, Z., Zhang, C. et al. Full-color flexible laser displays based on random laser arrays. Sci. China Mater. 64, 2805–2812 (2021). https://doi.org/10.1007/s40843-021-1664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1664-0

Keywords

Navigation