Skip to main content
Log in

Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications

有机-无机杂化钙钛矿单晶研究进展: 生长技术及应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

As a new generation of solution-processable optoelectronic materials, organic-inorganic hybrid halide perovskites have attracted a great deal of interest due to their high and balanced carrier mobility, long carrier diffusion length and large light absorption coefficient. These materials have demonstrated wide applications in solar cell, light-emitting diode, laser, photodetector, catalysis and other fields. Comparing with their polycrystalline film counterpart, perovskite single crystals have low trap density and no grain boundaries and thus are anticipated to possess much better optoelectronic performances. Herein, we review the key progress in the development of organic-inorganic halide perovskite single crystals. Particularly, the crystal growth techniques and applications of these advanced materials are highlighted.

摘要

作为一种新型的光电材料, 有机-无机杂化钙钛矿以其高光吸收系数、 长扩散长度、 高载流子迁移率等优点为人们所关注. 这类材料在太阳电池、 光电探测器、 发光二极管、 激光器、 催化等诸多领域有极为优秀的表现. 与多晶材料相比, 单晶的低缺陷、 无晶界等特点使其拥有更好的性能. 本文从生长技术和应用两个方面综述了有机-无机杂化钙钛矿单晶的研究进展, 并对该领域的未来发展进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Møller CK. A phase transition in cæsium plumbochloride. Nature, 1957, 180: 981–982

    Article  Google Scholar 

  2. Møller CK. Crystal structure and photoconductivity of cæsium plumbohalides. Nature, 1958, 182: 1436–1436

    Article  Google Scholar 

  3. Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591

    Article  Google Scholar 

  4. Noh JH, Im SH, Heo JH, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764–1769

    Article  Google Scholar 

  5. Zheng K, Zhu Q, Abdellah M, et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J Phys Chem Lett, 2015, 6: 2969–2975

    Article  Google Scholar 

  6. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    Article  Google Scholar 

  7. Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    Article  Google Scholar 

  8. Leijtens T, Stranks SD, Eperon GE, et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano, 2014, 8: 7147–7155

    Article  Google Scholar 

  9. Chen Y, Peng J, Su D, et al. Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7: 4471–4475

    Article  Google Scholar 

  10. Wehrenfennig C, Eperon GE, Johnston MB, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater, 2014, 26: 1584–1589

    Article  Google Scholar 

  11. Niu G, Li W, Li J, et al. Progress of interface engineering in perovskite solar cells. Sci China Mater, 2016, 59: 728–742

    Article  Google Scholar 

  12. Wei J, Shi C, Zhao Y, et al. Potentials and challenges towards application of perovskite solar cells. Sci China Mater, 2016, 59: 769–778

    Article  Google Scholar 

  13. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  Google Scholar 

  14. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  15. Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692

    Article  Google Scholar 

  16. Xing G, Mathews N, Lim SS, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480

    Article  Google Scholar 

  17. Guo Y, Liu C, Tanaka H, et al. Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light. J Phys Chem Lett, 2015, 6: 535–539

    Article  Google Scholar 

  18. Da P, Cha M, Sun L, et al. High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett, 2015, 15: 3452–3457

    Article  Google Scholar 

  19. He Y, Galli G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem Mater, 2014, 26: 5394–5400

    Article  Google Scholar 

  20. Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett, 2013, 4: 3623–3630

    Article  Google Scholar 

  21. Baeg KJ, Binda M, Natali D, et al. Organic light detectors: photodiodes and phototransistors. Adv Mater, 2013, 25: 4267–4295

    Article  Google Scholar 

  22. Park NG. Perovskite solar cells: an emerging photovoltaic technology. Mater Today, 2015, 18: 65–72

    Article  Google Scholar 

  23. Kazim S, Nazeeruddin MK, Grätzel M, et al. Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed, 2014, 53: 2812–2824

    Article  Google Scholar 

  24. Boix PP, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today, 2014, 17: 16–23

    Article  Google Scholar 

  25. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    Article  Google Scholar 

  26. Sum TC, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energ Environ Sci, 2014, 7: 2518–2534

    Article  Google Scholar 

  27. Kim HS, Im SH, Park NG. Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C, 2014, 118: 5615–5625

    Article  Google Scholar 

  28. Jung HS, Park NG. Perovskite solar cells: frommaterials to devices. Small, 2015, 11: 10–25

    Article  Google Scholar 

  29. Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10: 391–402

    Article  Google Scholar 

  30. Fan R, Huang Y, Wang L, et al. The progress of interface design in perovskite-based solar cells. Adv Energ Mater, 2016, 6: 1600460

    Article  Google Scholar 

  31. Veldhuis SA, Boix PP, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 2016, 28: 6804–6834

    Article  Google Scholar 

  32. Tong X, Lin F, Wu J, et al. High performance perovskite solar cells. Adv Sci, 2016, 3: 1500201

    Article  Google Scholar 

  33. Chen Y, He M, Peng J, et al. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: from polycrystalline films to single crystals. Adv Sci, 2016, 3: 1500392

    Article  Google Scholar 

  34. Correa-Baena JP, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells. Energ Environ Sci, 2017, 10: 710–727

    Article  Google Scholar 

  35. Wang Z, Shi Z, Li T, et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew Chem Int Ed, 2017, 56: 1190–1212

    Article  Google Scholar 

  36. Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347: 519–522

    Article  Google Scholar 

  37. Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 m in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967–970

    Article  Google Scholar 

  38. Weber D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur /CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z für Naturforschung B, 1978, 33

    Google Scholar 

  39. Weber D. CH3NH3SnBrxI3-x (x = 0–3), ein Sn(II)-system mit kubischer perowskitstruktur/CH3NH3SnBrxI3-x(x = 0–3), a Sn(II)-system with cubic perovskite structure. Z für Naturforschung B, 1978, 33

    Google Scholar 

  40. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019–9038

    Article  Google Scholar 

  41. Baikie T, Fang Y, Kadro JM, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1: 5628

    Article  Google Scholar 

  42. Dang Y, Liu Y, Sun Y, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. Cryst Eng Comm, 2015, 17: 665–670

    Article  Google Scholar 

  43. Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys, 1987, 87: 6373–6378

    Article  Google Scholar 

  44. Lian Z, Yan Q, Lv Q, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci Rep, 2015, 5: 16563

    Article  Google Scholar 

  45. Fang Y, Dong Q, Shao Y, et al. Highly narrowband perovskite single- crystal photodetectors enabled by surface-charge recombination. Nat Photon, 2015, 9: 679–686

    Article  Google Scholar 

  46. Su J, Chen DP, Lin CT. Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution. J Cryst Growth, 2015, 422: 75–79

    Article  Google Scholar 

  47. Dang Y, Zhou Y, Liu X, et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew Chem, 2016, 128: 3508–3511

    Article  Google Scholar 

  48. Dang Y, Zhong C, Zhang G, et al. Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH(CH3)3SnX3 (X = Cl, Br). Chem Mater, 2016, 28: 6968–6974

    Article  Google Scholar 

  49. Lian Z, Yan Q, Gao T, et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J Am Chem Soc, 2016, 138: 9409–9412

    Article  Google Scholar 

  50. Saidaminov MI, Abdelhady AL, Murali B, et al. High-quality bulk hybrid perovskite single crystals withinminutes by inverse temperature crystallization. Nat Commun, 2015, 6: 7586–7592

    Article  Google Scholar 

  51. Saidaminov MI, Abdelhady AL, Maculan G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem Commun, 2015, 51: 17658–17661

    Article  Google Scholar 

  52. Maculan G, Sheikh AD, Abdelhady AL, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett, 2015, 6: 3781–3786

    Article  Google Scholar 

  53. Zhumekenov AA, Saidaminov MI, Haque MA, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energ Lett, 2016, 1: 32–37

    Article  Google Scholar 

  54. Abdelhady AL, Saidaminov MI, Murali B, et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J Phys Chem Lett, 2016, 7: 295–301

    Article  Google Scholar 

  55. Han Q, Bae SH, Sun P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv Mater, 2016, 28: 2253–2258

    Article  Google Scholar 

  56. Kadro JM, Nonomura K, Gachet D, et al. Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Sci Rep, 2015, 5: 11654

    Article  Google Scholar 

  57. Zhang T, Yang M, Benson EE, et al. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1−xClx)3. Chem Commun, 2015, 51: 7820–7823

    Article  Google Scholar 

  58. Liu Y, Yang Z, Cui D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv Mater, 2015, 27: 5176–5183

    Article  Google Scholar 

  59. Liu Y, Sun J, Yang Z, et al. 20-mm-Large single-crystalline formamidinium- perovskite wafer for mass production of integrated photodetectors. Adv Optical Mater, 2016, 4: 1829–1837

    Article  Google Scholar 

  60. Zhang Y, Liu Y, Li Y, et al. Perovskite CH3NH3Pb(BrxI{1−itx})3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. J Mater Chem C, 2016, 4: 9172–9178

    Article  Google Scholar 

  61. Dirin DN, Cherniukh I, Yakunin S, et al. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem Mater, 2016, 28: 8470–8474

    Article  Google Scholar 

  62. Rakita Y, Kedem N, Gupta S, et al. Low-temperature solutiongrown CsPbBr3 single crystals and their characterization. Cryst Growth Des, 2016, 16: 5717–5725

    Article  Google Scholar 

  63. Yang Y, Yan Y, Yang M, et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat Commun, 2015, 6: 7961–7967

    Article  Google Scholar 

  64. Zhou H, Nie Z, Yin J, et al. Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH3NH3PbI3 single crystals for photovoltaic applications. RSC Adv, 2015, 5: 85344–85349

    Article  Google Scholar 

  65. Kobayashi M, Omata K, Sugimoto S, et al. Scintillation characteristics of CsPbCl3 single crystals. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2008, 592: 369–373

    Article  Google Scholar 

  66. Stoumpos CC, Malliakas CD, Peters JA, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des, 2013, 13: 2722–2727

    Article  Google Scholar 

  67. Peng W, Wang L, Murali B, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv Mater, 2016, 28: 3383–3390

    Article  Google Scholar 

  68. Liu Y, Zhang Y, Yang Z, et al. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv Mater, 2016, 28: 9204–9209

    Article  Google Scholar 

  69. Chen YX, Ge QQ, Shi Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J Am Chem Soc, 2016, 138: 16196–16199

    Article  Google Scholar 

  70. Rao HS, Li WG, Chen BX, et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrow-band-photodetectors. Adv Mater, 2017, 29: 1602639

    Article  Google Scholar 

  71. Zhao P, Xu J, Dong X, et al. Large-size CH3NH3PbBr3 single crystal: growth and in situ characterization of the photophysics properties. J Phys Chem Lett, 2015, 6: 2622–2628

    Article  Google Scholar 

  72. Fang HH, Raissa R, Abdu-Aguye M, et al. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv Funct Mater, 2015, 25: 2378–2385

    Article  Google Scholar 

  73. Yang D, Xie C, Sun J, et al. Amplified spontaneous emission from organic-inorganic hybrid lead iodide perovskite single crystals under direct multiphoton excitation. Adv Optical Mater, 2016, 4: 1053–1059

    Article  Google Scholar 

  74. Valverde-Chávez DA, Ponseca CS, Stoumpos CC, et al. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energ Environ Sci, 2015, 8: 3700–3707

    Article  Google Scholar 

  75. Fang Y, Wei H, Dong Q, et al. Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat Commun, 2017, 8: 14417

    Article  Google Scholar 

  76. Lv Q, He W, Lian Z, et al. Anisotropic moisture erosion of CH3NH3PbI3 single crystals. Cryst Eng Comm, 2017, 19: 901–904

    Article  Google Scholar 

  77. Grattan KTV, Sun T. Fiber optic sensor technology: an overview. Sensors Actuators A-Phys, 2000, 82: 40–61

    Article  Google Scholar 

  78. Ghezzi D, Antognazza MR, Dal Maschio M, et al. A hybrid bioorganic interface for neuronal photoactivation. Nat Commun, 2011, 2: 166–173

    Article  Google Scholar 

  79. Razeghi M, Rogalski A. Semiconductor ultraviolet detectors. J Appl Phys, 1996, 79: 7433–7473

    Article  Google Scholar 

  80. Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet–visible–near infrared photodetectors. ACS Nano, 2014, 8: 787–796

    Article  Google Scholar 

  81. Fang H, Li Q, Ding J, et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. J Mater Chem C, 2016, 4: 630–636

    Article  Google Scholar 

  82. Ding J, Fang H, Lian Z, et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. Cryst Eng Comm, 2016, 18: 4405–4411

    Article  Google Scholar 

  83. Shaikh PA, Shi D, Retamal JRD, et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. J Mater Chem C, 2016, 4: 8304–8312

    Article  Google Scholar 

  84. Cao M, Tian J, Cai Z, et al. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl Phys Lett, 2016, 109: 233303

    Article  Google Scholar 

  85. Dong Q, Song J, Fang Y, et al. Lateral-structure single-crystal hybrid perovskite solar cells via piezoelectric poling. Adv Mater, 2016, 28: 2816–2821

    Article  Google Scholar 

  86. Kasap S, Frey JB, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors, 2011, 11: 5112–5157

    Article  Google Scholar 

  87. Yaffe MJ, Rowlands JA. X-ray detectors for digital radiography. Phys Med Biol, 1997, 42: 1–39

    Article  Google Scholar 

  88. Tegze M, Faigel G. X-ray holography with atomic resolution. Nature, 1996, 380: 49–51

    Article  Google Scholar 

  89. Evans RD, Noyau A. The Atomic Nucleus. Summit: McGraw-Hill, 1955, 582

    Google Scholar 

  90. Heiss W, Brabec C. X-ray imaging: perovskites target X-ray detection. Nat Photon, 2016, 10: 288–289

    Article  Google Scholar 

  91. Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photon, 2015, 9: 444–449

    Article  Google Scholar 

  92. Náfrádi B, Náfrádi G, Forró L, et al. Methylammonium lead iodide for efficient X-ray energy conversion. J Phys Chem C, 2015, 119: 25204–25208

    Article  Google Scholar 

  93. Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photon, 2016, 10: 333–339

    Article  Google Scholar 

  94. Yakunin S, Dirin DN, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photon, 2016, 10: 585–589

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91333109 and 21671115); Tsinghua University Initiative Scientific Research Program (20131089202 and 20161080165) and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201516) are also acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Yan  (严清峰).

Additional information

Jie Ding received a BSc degree in chemistry (2014) from Beijing University of Chemical Technology. After that, she has been pursuing her PhD degree at Tsinghua University. Her research interests focus on the hybrid perovskite single crystal growth and application.

Qingfeng Yan earned his PhD degree from the Institute of Semiconductors, Chinese Academy of Sciences in 2003. He joined the Department of Chemical & Biomolecular Engineering, National University of Singapore as a research fellow in August 2003. From April 2006, he worked with the School of Materials Science and Engineering, Nanyang Technological University, Singapore and the Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA as a joint postdoctoral fellow. Dr. Yan joined the Department of Chemistry, Tsinghua University as an associate professor in 2008. His current research interest focuses on the synthesis of functional crystals and materials chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Yan, Q. Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci. China Mater. 60, 1063–1078 (2017). https://doi.org/10.1007/s40843-017-9039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9039-8

Keywords

Navigation