Skip to main content
Log in

Impact of sol aging on TiO2 compact layer and photovoltaic performance of perovskite solar cell

胶体陈化时间对TiO2致密层及钙钛矿太阳电池性能的影响探究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Perovskite solar cells are known to have a power conversion efficiency dependent on subtle variation in chemical composition and crystal and microstructures of materials, processing conditions, and device fabrication procedures and conditions. The present work demonstrates such strong dependence of power conversion efficiency on a TiO2 film made of the same sol with various aging time. A dense and conformal TiO2 film was prepared by sol-gel method, and the influences of its surface morphology and thickness on performance of perovskite solar cells have been investigated. The surface morphology and thickness of the TiO2 film were tuned by adjusting the aging time of sol, resulting in enhanced short-circuit current density and fill factor of the perovskite solar cells due to increased coverage and roughness of perovskite films, light refraction, and effective charge recombination blocking effect, which were verified by means of the light absorption spectra, photoluminescence of perovskite films with and without hole transport layer, cyclic voltammogram, and electrochemical impedance spectra. The cells with a dense and conformal TiO2 compact layer derived fromthe sol aged for 4 h exhibit a power conversion efficiency of 15.7%, 50% higher than the efficiency based on TiO2 layer derived from 0 h aging sol and 3 times of the efficiency with TiO2 layer made from 8 h aged sol.

摘要

钙钛矿太阳电池的光伏性能有赖于对材料的化学组分、晶体以及微观结构的精细调控和对工艺条件和制备过程的控制. 本工作针对不同陈化时间的溶胶制备的TiO2致密层与太阳电池性能之间的关联性进行了研究. 研究中, 通过溶胶-凝胶法制备了致密、均匀的TiO2薄膜, 并研究了其表面形貌及厚度对钙钛矿太阳电池性能的影响. 通过调节溶胶的陈化时间可以实现对TiO2表面形貌和厚度的控制, 由于陈化后的溶胶会提高TiO2致密层的覆盖度, 粗糙度及光的折射率, 并有效阻挡电子的复合, 从而导致钙钛矿太阳电池中短路电流密度和填充因子提升. 钙钛矿薄膜的吸收光谱, 光致发光谱, TiO2薄膜的循环伏安测试及整个电池的交流阻抗谱的测试结果, 也进一步论证了该结论. 结果显示使用陈化时间为4 h的溶胶制备的钙钛矿电池获得了15.7%的能量转化效率, 比使用0 h陈化的溶胶制备的太阳电池效率高出50%, 是使用陈化时间为8 h的溶胶制备的太阳能电池效率的3倍.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959

    Article  Google Scholar 

  2. Yang HG, Liu G, Qiao SZ, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc, 2009, 131: 4078–4083

    Article  Google Scholar 

  3. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  Google Scholar 

  4. Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol, 1998, 32: 726–728

    Article  Google Scholar 

  5. Zhang J, Li S, Yang P, et al. Deposition of transparent TiO2 nanotubes- films via electrophoretic technique for photovoltaic applications. Sci China Mater, 2015, 58: 785–790

    Article  Google Scholar 

  6. Yoo B, Kim KJ, Bang SY, et al. Chemically deposited blocking layers on FTO substrates: effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells. J Electroanal Chem, 2010, 638: 161–166

    Article  Google Scholar 

  7. Dar MI, Ramos FJ, Xue Z, et al. Photoanode based on (001)-oriented anatase nanoplatelets for organic–inorganic lead iodide perovskite solar cell. Chem Mater, 2014, 26: 4675–4678

    Article  Google Scholar 

  8. Tian J, Gao R, Zhang Q, et al. Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J Phys Chem C, 2012, 116: 18655–18662

    Article  Google Scholar 

  9. McGehee MD. Perovskite solar cells: continuing to soar. Nat Mater, 2014, 13: 845–846

    Article  Google Scholar 

  10. Grätzel M. The light and shade of perovskite solar cells. NatMater, 2014, 13: 838–842

    Google Scholar 

  11. Hodes G. Perovskite-based solar cells. Science, 2013, 342: 317–318

    Article  Google Scholar 

  12. Zheng K, ZhuQ, AbdellahM, et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J Phys Chem Lett, 2015, 6: 2969–2975

    Article  Google Scholar 

  13. Wang Q, Chen H, Liu G, et al. Control of organic-inorganic halide perovskites in solid-state solar cells: a perspective. Sci Bull, 2015, 60: 405–418

    Article  Google Scholar 

  14. Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon, 2013, 8: 133–138

    Article  Google Scholar 

  15. Sung SD, Ojha DP, You JS, et al. 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells. Nanoscale, 2015, 7: 8898–8906

    Article  Google Scholar 

  16. Ip AH, Quan LN, Adachi MM, et al. A two-step route to planar perovskite cells exhibiting reduced hysteresis. Appl Phys Lett, 2015, 106: 143902

    Article  Google Scholar 

  17. Ball JM, Lee MM, Hey A, et al. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ Sci, 2013, 6: 1739–1743

    Article  Google Scholar 

  18. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    Article  Google Scholar 

  19. Peng B, Jungmann G, Jäger C, et al. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coordin Chem Rev, 2004, 248: 1479–1489

    Article  Google Scholar 

  20. Kavan L, Tétreault N, Moehl T, et al. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J Phys Chem C, 2014, 118: 16408–16418

    Article  Google Scholar 

  21. Liang Z, Zhang Q, Wiranwetchayan O, et al. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells. Adv Funct Mater, 2012, 22: 2194–2201

    Article  Google Scholar 

  22. Gao Q, Yang S, Lei L, et al. An effective TiO2 blocking layer for perovskite solar cells with enhanced performance. Chem Lett, 2015, 44: 624–626

    Article  Google Scholar 

  23. Cojocaru L, Uchida S, Sanehira Y, et al. Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chem Lett, 2015, 44: 674–676

    Article  Google Scholar 

  24. Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24: 151–157

    Article  Google Scholar 

  25. Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    Article  Google Scholar 

  26. Aharon S, Gamliel S, Cohen BE, et al. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys, 2014, 16: 10512–10518

    Article  Google Scholar 

  27. Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118: 9412–9418

    Article  Google Scholar 

  28. Hench LL, West JK. The sol-gel process. Chem Rev, 1990, 90: 33–72

    Article  Google Scholar 

  29. Brinker CJ, Scherer GW. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. New York: Academic Press, 1990

    Google Scholar 

  30. Tian J, Zhang Q, Zhang L, et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale, 2013, 5: 936–943

    Article  Google Scholar 

  31. Moehl T, Im JH, Lee YH, et al. Strong photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. J Phys Chem Lett, 2014, 5: 3931–3936

    Article  Google Scholar 

  32. Liu D, Yang J, Kelly TL. Compact layer free perovskite solar cells with 13.5% efficiency. J Am Chem Soc, 2014, 136: 17116–17122

    Article  Google Scholar 

  33. Xu X, Zhang H, Shi J, et al. Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A, 2015, 3: 19288–19293

    Article  Google Scholar 

  34. Zhu L, Shi J, Li D, et al. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells. Acta Chim Sin, 2015, 73: 261

    Article  Google Scholar 

  35. Dualeh A, Moehl T, Tétreault N, et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano, 2014, 8: 362–373

    Article  Google Scholar 

  36. Fei C, Guo L, Li B, et al. Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 2016, 27: 17–26

    Article  Google Scholar 

  37. Pascoe AR, Yang M, Kopidakis N, et al. Planar versus mesoscopic perovskite microstructures: the influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. Nano Energy, 2016, 22: 439–452

    Article  Google Scholar 

  38. Zhao Z, Chen X, Wu H, et al. Probing the photovoltage and photocurrent in perovskite solar cells with nanoscale resolution. Adv Funct Mater, 2016, 26: 3048–3058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Tian  (田建军) or Guozhong Cao  (曹国忠).

Additional information

Lixue Guo is currently a master candidate in Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences. Her research interest focuses on the application of plasmon effect in perovskite solar cells.

Jianjun Tian is a professor at the Advanced Material and Technology Institute, University of Science and Technology Beijing. He has worked as a visiting scholar at the University of Washington in 2011. His current research is focused on the fabrication of high quality quantum dot sensitized solar cells and perovskite solar cells.

Guozhong Cao is a Boeing-Steiner Professor of materials science and engineering at the University of Washington, and a senior professor at Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences. He has published more than 500 papers, 8 books and 4 proceedings. His recent research is focusedmainly on solar cells, lithium-ion batteries, super capacitors, and hydrogen storage.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Fei, C., Zhang, R. et al. Impact of sol aging on TiO2 compact layer and photovoltaic performance of perovskite solar cell. Sci. China Mater. 59, 710–718 (2016). https://doi.org/10.1007/s40843-016-5099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5099-1

Keywords

Navigation