Skip to main content
Log in

Precipitation Trends of Scandium in Synthetic Red Mud Solutions with Different Precipitation Agents

  • Thematic Section: Green Rare Earth Elements--Innovations in Ore Processing, Hydrometallurgy, and Electrolysis
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

This research presents an alternative method for scandium (Sc) recovery from impure bauxite residue solutions containing Fe(III), Al, Ca, Nd, and Y through the use of hydroxide and phosphate precipitation. Among hydroxide donors, ammonia solution removed the most Fe(III) from solution, while co-precipitation of other elements in the synthetic pregnant leach solution remained negligible. When using dibasic phosphate as the precipitant, in the pH range of 1.5–2.5, both Sc and Fe were removed rapidly, while co-precipitation of other ions remained low. Experimental results were used to propose the preliminary design of a three-stage precipitation process capable of producing a scandium product from highly impure process solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lathabai S, Lloyd P (2002) The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al–Mg alloy. Acta Mater 50(17):4275–4292

    Article  CAS  Google Scholar 

  2. Lee S, Utsunomiya A, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon T (2002) Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater 50(3):553–564

    Article  CAS  Google Scholar 

  3. Marquis E, Seidman D (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49(11):1909–1919

    Article  CAS  Google Scholar 

  4. Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32(1):17–28

    Article  CAS  Google Scholar 

  5. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45(15):2423–2435

    Article  CAS  Google Scholar 

  6. Feuling RJ (1991) Recovery of scandium, yttrium and lanthanides from titanium ore. US Patent 5,049,363

  7. Gongyi G, Yuli C, Yu L (1988) Solvent extraction off scandium from wolframite residue. JOM 40(7):28–31

    Article  Google Scholar 

  8. Wang W, Cheng CY (2011) Separation and purification of scandium by solvent extraction and related technologies: a review. J Chem Technol Biotechnol 86(10):1237–1246

    Article  CAS  Google Scholar 

  9. Wang W, Pranolo Y, Cheng CY (2011) Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108(1):100–108

    Article  CAS  Google Scholar 

  10. Power G, Gräfe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108(1):33–45

    Article  CAS  Google Scholar 

  11. Borra CR, Pontikes Y, Binnemans K, Van Gerven T (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27

    Article  CAS  Google Scholar 

  12. Ochsenkühn-Petropoulou MT, Hatzilyberis KS, Mendrinos LN, Salmas CE (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41(23):5794–5801

    Article  Google Scholar 

  13. Ochsenkühn-Petropulu M, Lyberopulu T, Ochsenkühn K, Parissakis G (1996) Recovery of lanthanides and yttrium from red mud by selective leaching. Anal Chim Acta 319(1):249–254

    Article  Google Scholar 

  14. Wang W, Pranolo Y, Cheng CY (2013) Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep Purif Technol 108:96–102

    Article  CAS  Google Scholar 

  15. Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1995) Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta 315(1):231–237

    Article  Google Scholar 

  16. Horovitz CT (2012) Scandium its occurrence, chemistry physics, metallurgy, biology and technology. Academic Press, London

    Google Scholar 

  17. Chen PL, Chen IW (1993) Reactive cerium (IV) oxide powders by the homogeneous precipitation method. J Am Ceram Soc 76(6):1577–1583

    Article  CAS  Google Scholar 

  18. Li JG, Ikegami T, Mori T, Yajima Y (2004) Sc2O3 nanopowders via hydroxyl precipitation: effects of sulfate ions on powder properties. J Am Ceram Soc 87(6):1008–1013

    Article  CAS  Google Scholar 

  19. Stevenson PC, Nervik WE (1961) The radiochemistry of the rare earths: scandium, yttrium, and actinium, vol 3020. National Academies, Washington, DC

    Google Scholar 

  20. Vickery RC (1960) The chemistry of yttrium and scandium, vol 2. Pergamon Press, Oxford

    Google Scholar 

  21. Firsching FH, Brune SN (1991) Solubility products of the trivalent rare-earth phosphates. J Chem Eng Data 36(1):93–95

    Article  CAS  Google Scholar 

  22. Liu X, Byrne RH (1997) Rare earth and yttrium phosphate solubilities in aqueous solution. Geochim Cosmochim Acta 61(8):1625–1633

    Article  CAS  Google Scholar 

  23. Lucas S, Champion E, Bregiroux D, Bernache-Assollant D, Audubert F (2004) Rare earth phosphate powders RePO4·nH2O (Re = La, Ce or Y)—part I. Synthesis and characterization. J Solid State Chem 177(4):1302–1311

    Article  CAS  Google Scholar 

  24. Beltrami D, Deblonde GJ-P, Bélair S, Weigel V (2015) Recovery of yttrium and lanthanides from sulfate solutions with high concentration of iron and low rare earth content. Hydrometallurgy 157:356–362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Horizon 2020 Programme ([H2020/2014–2019]) under Grant Agreement No. 636876 (MSCA-ETN REDMUD). This publication reflects only the author’s view, exempting the Community from any liability. Project website: http://www.etn.redmud.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengi Yagmurlu.

Additional information

The contributing editor for this article was Yiannis Pontikes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagmurlu, B., Dittrich, C. & Friedrich, B. Precipitation Trends of Scandium in Synthetic Red Mud Solutions with Different Precipitation Agents. J. Sustain. Metall. 3, 90–98 (2017). https://doi.org/10.1007/s40831-016-0098-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-016-0098-9

Keywords

Navigation