Skip to main content
Log in

The Modified Homotopy Algorithm for Dispersion Phenomena

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The main objective of the propose analysis is to find approximate analytical solution of nonlinear partial differential equation arsing in longitudinal dispersion phenomena by means of new and reliable algorithm called the modified homotopy analysis method (MHAM). The present analysis revels that the MHAM is very efficient to handle the nonlinear partial differential equation. The convergence rate of the MHAM is very faster comparative to other standard methods due to the presence of fractional factor \(\left( \frac{1}{n}\right) ^{m}\) and the convergence parameter h. The graphical results obtained from the proposed method shows its efficiency to handle nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liao, S.J.: Homotopy analysis method a new analytical technique for nonlinear problems. Commun. Nonlinear Sci. Numer. Simul. 2, 95–100 (1997)

    Article  Google Scholar 

  2. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  3. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    MATH  MathSciNet  Google Scholar 

  4. El-Tawil, M.A., Huseen, S.N.: The q-homotopy analysis method. Int. J. Appl. Math. Mech. 8(15), 51–75 (2012)

    Google Scholar 

  5. Shah, K., Singh, T.: Solution of Burger’s equation in a one-dimensional groundwater recharge by spreading using q-homotopy analysis method. Eur. J. Pure Appl. Math. 9(1), 114–124 (2016)

    MATH  MathSciNet  Google Scholar 

  6. Iyiola, O.S., Ojo, G.O.: Analytical solutions of time-fractional models for homogeneous gadner equation and nonhomogeneous differential equations. Ain Shams Eng. J. 5, 999–1004 (2014)

    Article  Google Scholar 

  7. Mohamed, M.S., Hamed, Y.S.: Solving the convection–diffusion equation by means of the optimal q-homotopy analysis method (Oq-HAM). Results Phys. 6, 20–25 (2016)

    Article  MATH  Google Scholar 

  8. Iyiola, O.S.: On the solutions of non-linear time-fractional gas dynamic equations: an analytical approach. Int. J. Pure Appl. Math. 98(4), 491–502 (2015)

    Article  Google Scholar 

  9. Delleur, J.W.: The Handbook of Groundwater Engineering. CRC Press LLC, Boca Raton (1999)

    Google Scholar 

  10. Meher, R.K., Mehta, M.N.: Adomian decomposition method for dispersion phenomenon arising in longitudinal dispersion of miscible fluid flow through porous media. Adv. Theor. Appl. Mech. 3, 211–220 (2010)

    MATH  Google Scholar 

  11. Hunt, B.: Dispersion calculations in nonuniform seepage. J. Hydrol. 36, 261–277 (1978). doi:10.1016/0022-1694(78)90148-8

    Article  Google Scholar 

  12. Patel, T., Mehta, M.N.: A solution of Burger’s equation for longitudinal dispersion of miscible fluid flow through porous media. Indian J. Pet. Geol. 14, 49–54 (2005)

    Google Scholar 

  13. Shah, K., Singh, T.: A solution of the Burger’s equation arising in the longitudinal dispersion phenomenon in fluid flow through porous media by mixture of new integral transform and homotopy perturbation method. J. Geosci. Environ. Prot. 3, 24–30 (2015). doi:10.4236/gep.2015.34004

    Google Scholar 

  14. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1972)

    MATH  Google Scholar 

  15. Polubarinova-Kochina, P.Ya.: Theory of Ground Water Movement. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  16. Mehta, M.N.: A solution of Burger’s equation type one dimensional ground water recharge by spreading in porous media. J. Indian Acad. Math. 28(1), 25–32 (1977)

    MATH  MathSciNet  Google Scholar 

  17. Odibat, Z.M.: A study on the convergence of homotopy analysis method. Appl. Math. Comput. 217, 782–789 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Daga, A., Desai, K., Pradhan, V.: Variational homotopy perturbation method for longitudinal dispersion arising in fluid flow through porous media. Int. J. Emerg. Technol. Comput. Appl. Sci. 6(1), 13–18 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjan Shah.

Ethics declarations

Conflict of interest

The authors declare there is no competing interests regarding current manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K., Singh, T. The Modified Homotopy Algorithm for Dispersion Phenomena. Int. J. Appl. Comput. Math 3 (Suppl 1), 785–799 (2017). https://doi.org/10.1007/s40819-017-0382-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0382-9

Keywords

Navigation