Skip to main content

Advertisement

Log in

Numerical Study of Nonlinear Heat Transfer from a Wavy Surface to a High Permeability Medium with Pseudo-Spectral and Smoothed Particle Methods

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Motivated by petro-chemical geological systems, we consider the natural convection boundary layer flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability porous medium. High permeability is considered to represent geologically sparsely packed porous media. Both Darcian drag and Forchheimer inertial drag terms are included in the velocity boundary layer equation. A high permeability medium is considered. We employ a sinusoidal relation for the wavy surface. Using a set of transformations, the momentum and heat conservation equations are converted from an (xy) coordinate system to an (\(x, \eta )\) dimensionless system. The two-point boundary value problem is then solved numerically with a pseudo-spectral method based on combining the Bellman–Kalaba quasi linearization method with the Chebyschev spectral collocation technique (SQLM). The SQLM computations are demonstrated to achieve excellent correlation with smoothed particle hydrodynamic (SPH) Lagrangian solutions. We study the effect of Darcy number (Da), Forchheimer number (Fs), amplitude wavelength (A) and Prandtl number (Pr) on the velocity and temperature distributions in the regime. Local Nusselt number is also computed for selected cases. The study finds important applications in petroleum engineering and also energy systems exploiting porous media and undulating (wavy) surface geometry. The SQLM algorithm is shown to be exceptionally robust and achieves fast convergence and excellent accuracy in nonlinear heat transfer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun, J., Jing, J., Jing, P., Duan, N., Cheng, W., Tan, J.: Experimental study on drag reduction of aqueous foam on heavy oil flow boundary layer in an upward vertical pipe. Pet. Sci. Eng. 146, 409–417 (2016)

    Article  Google Scholar 

  2. Edomwonyi-Otu, L.C., Angeli, P.: Pressure drop and holdup predictions in horizontal oil–water flows for curved and wavy interfaces. Chem. Eng. Res. Des. 93, 55–65 (2015)

    Article  Google Scholar 

  3. Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34, 8964–8973 (2009)

    Article  Google Scholar 

  4. Caponi, E.A., Fornberg, B., Knight, D.D., McLean, J.W., Saffman, P.G., Yuen, H.C.: Calculations of laminar viscous flow over a moving wavy surface. J. Fluid Mech. 124, 347–362 (1982)

    Article  MATH  Google Scholar 

  5. Yao, L.S.: Natural convection along a vertical wavy surface. ASME J. Heat Transf. 105, 465–468 (1983)

    Article  Google Scholar 

  6. Moulic, S.G., Yao, L.S.: Natural convection along a vertical wavy surface with uniform heat flux. ASME J. Heat Transf. 111, 1106–1108 (1989)

    Article  Google Scholar 

  7. Rees, D.A.S., Pop, I.: Boundary layer flow and heat transfer on a continuous moving wavy surface. Acta Mech. 112(4), 149–158 (1995)

    Article  MATH  Google Scholar 

  8. Hossain, M.A., Kabir, S., Rees, D.A.S.: Natural convection of fluid with variable viscosity from a heated vertical wavy surface. Z. Angew. Math. Phys. 53, 48–57 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tashtoush, B., Abu-Irshaid, E.: Heat and fluid flow from a wavy surface subjected to a variable heat flux. Acta Mech. 152, 1–8 (2001)

    Article  MATH  Google Scholar 

  10. Bég, O.: Anwar, The Abbasi–Tajik model in thermal convection from wavy surfaces, Technical Report, Aerospace Engineering, Sheffield Hallam University, Sheffield, pp. 94 (2009)

  11. Hossain, M.Z., Islam, A.K.M S.: Numerical investigation of unsteady flow and heat transfer in wavy channels. In: 15th Australasian Fluid Mechanics Conference, Sidney, Australia, pp. 13–17 (2004)

  12. Shalini, R., Kumar, B.V.: Free convection in a thermally-stratified non-Darcian wavy porous enclosure. J. Porous Media 4, 1–18 (2004)

  13. Rahman, S.U., Badr, H.M.: Natural convection from a vertical wavy surface embedded in saturated porous media. Ind. Eng. Chem. Res. 41(17), 4422–4429 (2002)

    Article  Google Scholar 

  14. Chiu, C.P., Chou, H.M.: Free convection in the boundary layer flow of a micropolar fluid along a vertical wavy surface. Acta Mech. 101, 161–174 (1993)

    Article  MATH  Google Scholar 

  15. Varol, Y., Oztop, H.F.: Buoyancy induced heat transfer and fluid flow inside a tilted wavy solar collector. Build. Environ. 42, 2062–2071 (2007)

    Article  Google Scholar 

  16. Gawlik, K.M., Kutscher, C.F.: Wind heat loss from corrugated transpired solar collectors. ASME J. Sol. Energy Eng. 124, 256–261 (2002)

    Article  Google Scholar 

  17. Kumar, B.V.R., Shalini, G.: Non-Darcy free convection induced by a vertical wavy surface in a thermally stratified porous medium. Int. J. Heat Mass Transf. 47, 2353–2363 (2004)

    Article  MATH  Google Scholar 

  18. Rahman, S.U.: Natural convection along vertical wavy surfaces: an experimental study. Chem. Eng. J. 84, 587–591 (2001)

    Article  Google Scholar 

  19. Ghosh Moulic, S., Yao, L.S.: Mixed convection along a wavy surface. ASME J. Heat Transf. 111(4), 974–979 (1989)

    Article  Google Scholar 

  20. Abdul Alim, M., Rezaul Karim, M., Miraj Akand, M.: Heat generation effects on MHD natural convection flow along a vertical wavy surface with variable thermal conductivity. Am. J. Comput. Math. 2, 42–50 (2012)

    Article  Google Scholar 

  21. Bellman, R.E., Kalaba, R.E.: Quasilinearization and Nonlinear Boundary-Value Problems. Elsevier, NewYork (1965)

    MATH  Google Scholar 

  22. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  23. Anwar Bég, O.: THERMO-SPH—a smoothed particle simulator for heat transfer from complex geometrical configurations, Technical Report, Gort Engovation, Bradford, UK, THERMO-D-A-154, pp. 49 (2013)

  24. Coussy, O.: Mechanics of Porous Continua. Butterworths, France (1993)

    MATH  Google Scholar 

  25. Vafai, K., Tien, C.L.: Boundary and inertial effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)

    Article  MATH  Google Scholar 

  26. Owens, R.G., Chauvière, C., Phillips, T.N.: A locally-upwinded spectral technique (LUST) for viscoelastic flows. J. Non-Newton. Fluid Mech. 108, 49–72 (2002)

    Article  MATH  Google Scholar 

  27. Shateyi, S., Motsa, S.S.: Thermal radiation effects on heat and mass transfer over an unsteady stretching surface. Math. Probl. Eng. 2009, 1–13 (2009)

    Article  MATH  Google Scholar 

  28. Shateyi, S., Motsa, S.S.: Variable viscosity on magnetohydrodynamic fluid flow and heat transfer over an unsteady stretching surface with Hall effect. Bound. Value Probl. 2010, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sibanda, P., Motsa, S., Makukula, Z.: A spectral-homotopy analysis method for heat transfer flow of a third grade fluid between parallel plates. Int. J. Numer. Methods Heat Fluid Flow 22(1), 4–23 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bég, O.A., Hameed, M., Bég, T.A.: Chebyshev spectral collocation simulation of nonlinear boundary value problems in electrohydrodynamics (EHD). Int. J. Comput. Methods Eng. Sci. Mech. 14(2), 104–115 (2013)

    Article  MathSciNet  Google Scholar 

  31. Hoque, M.M., Alam, M.M., Ferdows, M., Bég, O.A.: Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit. Proc. IMECHE J. Eng. Med. 227(11), 1155–1170 (2013)

    Article  Google Scholar 

  32. Liang, C., Chen, J., Lee, J.D.: Spectral difference solution of two-dimensional unsteady compressible micropolar equations on moving and deformable grids. In: 50th AIAA Aerospace Sciences Meeting. Nashville, Tennessee (2012)

  33. Bég, O.A., Motsa, S.S., Kadir, A., Bég, T.A., Islam, M.N.: Spectral quasilinear numerical simulation of micropolar convective wall plumes in high permeability porous media. J. Eng. Thermophyis. (2016) (Submitted)

  34. Bég, O.A., Motsa, S.S., Islam, M.N., Lockwood, M.D.: Pseudo-spectral and variational iteration simulation of exothermically-reacting Rivlin–Ericksen viscoelastic flow and heat transfer in a rocket propulsion duct. Comput. Therm. Sci. 6(2), 91–102 (2014)

    Article  Google Scholar 

  35. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, Society for Industrial and Applied Mathematics. SIAM, Philadelphia (1977)

    Book  Google Scholar 

  36. Don, W.S., Solomonoff, A.: Accuracy and speed in computing the Chebyshev collocation derivative. SIAM J. Sci. Comput. 16, 1253–1268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1993)

    MATH  Google Scholar 

  38. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  39. Monaghan, J.J., Gingold, R.A.: Shock simulation by the particle method SPH. J. Comput. Phys. 52, 374–389 (1983)

    Article  MATH  Google Scholar 

  40. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  41. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  42. Monaghan, J.J.: SPH without a tensile instability. J. Comput. Phys. 159, 290–311 (2000)

    Article  MATH  Google Scholar 

  43. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  MATH  Google Scholar 

  44. Oger, G., Doring, M., Alessandrini, B., Ferrant, P.: Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys. 213, 803–822 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Comas-Cardona, S., Groenenboom, P.H.L., Binetruy, C., Krawczak, P.: A generic mixed FE-SPH method to address hydro-mechanical coupling in liquid composite moulding processes. Compos. Part A 36, 1004–1010 (2005)

    Article  MATH  Google Scholar 

  46. Sigalotti, L.D.G., Klapp, J., Sira, E., Melean, Y., Hasmy, A.: SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys. 191, 622–638 (2003)

    Article  MATH  Google Scholar 

  47. Zhu, Y., Fox, P.J.: Smoothed particle hydrodynamics model for diffusion through porous media. Transp. Porous Media 43, 441–471 (2001)

    Article  Google Scholar 

  48. Cleary, P.W., Monaghan, J.J.: Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 148, 235–236 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Bég, O.A.: SPLASH—A smoothed particle hydrodynamic solver for spacecraft “splashdown” simulations in MATLAB, Technical Report for European Space Consortium- AERO-D-61-SPH, Gort Engovation-Engineering Sciences, Bradford, pp. 85 (2013)

  50. Bég, O.A., Bég, TA.: Smoothed particle hydrodynamic simulation of magnetic field materials processing, Technical Report for Metallurgy Industry (Norway)-MANUFACT-M-14-SPH, Gort Engovation-Engineering Sciences, Bradford, pp. 64 (2013)

  51. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Co., Singapore (2003)

    Book  MATH  Google Scholar 

  52. Bég, O.A.: WAVY-SPH: A smoothed particle hydrodynamic solver for wavy solar collectors, Technical Report-SOLAR-E-SPH, Gort Engovation- Bradford, pp. 85 (2013)

  53. Abdallah, M.S., Zeghmati, B.: Effects of the wavy surface on free convection–radiation along an inclined plate. WASET J. 78, 458–464 (2013)

    Google Scholar 

  54. Prasad, V.R., Gaffar, S.A., Anwar Bég, O.: Heat and mass transfer of a nanofluid from a horizontal cylinder to a micropolar fluid. AIAA J. Thermophys. Heat Transf. 29, 127–139 (2015)

    Article  Google Scholar 

  55. Uddin, M.J., Bég, O., Amin, N.S.: Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing. J. Magn. Magn. Mater. 368, 252–261 (2014)

    Article  Google Scholar 

  56. Chang, T.B., Mehmood, A., Bég, O.A., Narahari, M., Islam, M.N., Ameen, F.: Numerical study of transient free convective mass transfer in a Walters-B viscoelastic flow with wall suction. Commun. Nonlinear Sci. Numer. Simul. 16, 216–225 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  57. Adesanya, S.O., Makinde, O.D.: MHD oscillatory slip flow and heat transfer in a channel filled with porous media. U.P.B Sci. Bull. A 76, 197–204 (2014)

    Google Scholar 

  58. Adesanya, S.O., Falade, J.A., Makinde, O.D.: Pulsating flow through vertical porous channel with viscous dissipation effect. U.P.B. Sci. Bull. Ser. D Mech. Eng. 77(1), 25–36 (2015)

    Google Scholar 

  59. Adesanya, S.O., Falade, J.A.: Thermodynamic analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex. Eng. J. 54, 615–622 (2015)

    Article  Google Scholar 

  60. Adesanya, S.O., Oluwadare, E.O., Falade, J.A., Makinde, O.D.: Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions. J. Magn. Magn. Mater. 396, 295–303 (2015)

    Article  Google Scholar 

  61. Adesanya, S.O., Kareem, S.O., Falade, J.A., Arekete, S.A.: Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy 93, 1239–1245 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anwar Bég.

Ethics declarations

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bég, O.A., Motsa, S.S., Bég, T.A. et al. Numerical Study of Nonlinear Heat Transfer from a Wavy Surface to a High Permeability Medium with Pseudo-Spectral and Smoothed Particle Methods. Int. J. Appl. Comput. Math 3, 3593–3613 (2017). https://doi.org/10.1007/s40819-017-0318-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0318-4

Keywords

Navigation