Skip to main content

Advertisement

Log in

Magnesium-Based Bioresorbable Stent Materials: Review of Reviews

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Many materials proposed as bioresorbable. However, in the clinical cardiology practice, they are not often used. This study evaluates the mechanical and corrosion properties of magnesium-based bioresorbable materials and identifies barriers to their implementation in clinical practice. The Embase, Scopus, Springer Link, and Science Direct databases searched up to April 4th, 2018. The magnesium-based materials were classified according to the compound materials used for enrichment. We have summarized the mechanical and corrosion properties separately. Of the 4194 potentially relevant publications, 101 reported systematic reviews. Of these studies, we included 37 in our review of reviews. In 51% of reviews, the authors reported mechanical properties and in 40% corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Text S1: Comprehensive EMBASE search strategy used in the systematic review. (biodegradable[All Fields] OR bioresorbable [All Fields] OR bioabsorbable [All Fields]) AND ("stents"[MeSH Terms] OR "stents"[All Fields] OR "stent"[All Fields]) AND ("heart"[MeSH Terms] OR "heart"[All Fields] OR "cardio"[All Fields]) AND ("metals"[MeSH Terms] OR "metals"[All Fields] OR "metal"[All Fields]).

References

  1. Gu X-N, Zheng Y (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4(2):111–115. https://doi.org/10.1007/s11706-010-0024-1

    Article  Google Scholar 

  2. Lam MT, Wu JC (2012) Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 10(8):1039–1049. https://doi.org/10.1586/erc.12.99

    Article  CAS  Google Scholar 

  3. Sharif F, Daly K, Crowley J, O’Brien T (2004) Current status of catheter- and stent-based gene therapy. Cardiovasc Res 64(2):208–216. https://doi.org/10.1016/j.cardiores.2004.07.003

    Article  CAS  Google Scholar 

  4. Hermawan H, Dube D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6(5):1693–1697. https://doi.org/10.1016/j.actbio.2009.10.006

    Article  CAS  Google Scholar 

  5. Qi PK, Yang Y, Maitz FM, Huang N (2013) Current status of research and application in vascular stents. Chin Sci Bull 58(35):4362–4370. https://doi.org/10.1007/s11434-013-6070-1

    Article  CAS  Google Scholar 

  6. Zollikofer CL, Antonucci F, Stuckmann G, Mattias P, Salomonowitz EK (1992) Historical overview on the development and characteristics of stents and future outlooks. Cardiovasc Inter Rad 15(5):272–278

    Article  CAS  Google Scholar 

  7. Wiebe J, Nef HM, Hamm CW (2014) Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol 64(23):2541–2551. https://doi.org/10.1016/j.jacc.2014.09.041

    Article  CAS  Google Scholar 

  8. Gogas BD, McDaniel M, Samady H, King SB (2014) Novel drug-eluting stents for coronary revascularization. Trends Cardiovasc Med 24(7):305–313. https://doi.org/10.1016/j.tcm.2014.07.004

    Article  CAS  Google Scholar 

  9. Chen YJ, Xu ZG, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005

    Article  CAS  Google Scholar 

  10. Bartosch M, Schubert S, Berger F (2015) Magnesium stents—fundamentals, biological implications and applications beyond coronary arteries. BioNanoMaterials 16(1):3–17. https://doi.org/10.1515/bnm-2015-0004

    Article  Google Scholar 

  11. Ramcharitar S, Serruys PW (2008) Fully biodegradable coronary stents progress to date. Am J Cardiovasc Drug 8(5):305–314. https://doi.org/10.2165/00129784-200808050-00003

    Article  CAS  Google Scholar 

  12. Capodanno D (2016) Bioresorbable scaffolds: clinical outcomes and considerations. Interv Cardiol Clin 5(3):357–363. https://doi.org/10.1016/j.iccl.2016.02.005

    Article  Google Scholar 

  13. Hou LD, Li Z, Pan Y, Sabir M, Zheng YF, Li L (2016) A review on biodegradable materials for cardiovascular stent application. Front Mater Sci 10(3):238–259. https://doi.org/10.1007/s11706-016-0344-x

    Article  Google Scholar 

  14. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  15. Ang HY, Bulluck H, Wong P, Venkatraman SS, Huang Y, Foin N (2017) Bioresorbable stents: current and upcoming bioresorbable technologies. Int J Cardiol 228:931–939. https://doi.org/10.1016/j.ijcard.2016.11.258

    Article  Google Scholar 

  16. Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M (2018) Zinc-based alloys for degradable vascular stent applications. Acta Biomater 71:1–23. https://doi.org/10.1016/j.actbio.2018.03.005

    Article  CAS  Google Scholar 

  17. O’Brien B, Zafar H, Ibrahim A, Zafar J, Sharif F (2016) Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng 44(2):523–535. https://doi.org/10.1007/s10439-015-1380-x

    Article  Google Scholar 

  18. Li X, Liu XM, Wu SL, Yeung KWK, Zheng YF, Chu PK (2016) Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater 45:2–30. https://doi.org/10.1016/j.actbio.2016.09.005

    Article  CAS  Google Scholar 

  19. Sezer N, Evis Z, Kayhan SM, Tahmasebifar A, Koc M (2018) Review of magnesium-based biomaterials and their applications. J Magnes Alloy 6(1):23–43. https://doi.org/10.1016/j.jma.2018.02.003

    Article  CAS  Google Scholar 

  20. Gu XN, Li SS, Li XM, Fan YB (2014) Magnesium based degradable biomaterials: a review. Front Mater Sci 8(3):200–218. https://doi.org/10.1007/s11706-014-0253-9

    Article  Google Scholar 

  21. Feng QM, Zhang DY, Xin CH, Liu XD, Lin WJ, Zhang WQ, Chen S, Sun K (2013) Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent. J Mater Sci-Mater Med 24(3):713–724. https://doi.org/10.1007/s10856-012-4823-z

    Article  CAS  Google Scholar 

  22. Francis A, Yang Y, Virtanen S, Boccaccini AR (2015) Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci-Mater Med 26(3):138. https://doi.org/10.1007/s10856-015-5473-8

    Article  CAS  Google Scholar 

  23. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  Google Scholar 

  24. Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 36:1–20. https://doi.org/10.1016/j.actbio.2016.03.047

    Article  CAS  Google Scholar 

  25. Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG (2017) Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 89:92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011

    Article  CAS  Google Scholar 

  26. Narayanan TSNS, Park IS, Lee MH (2014) Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci 60:1–71. https://doi.org/10.1016/j.pmatsci.2013.08.002

    Article  CAS  Google Scholar 

  27. Matias TB, Asato GH, Ramasco BT, Botta WJ, Kiminami CS, Bolfarini C (2014) Processing and characterization of amorphous magnesium based alloy for application in biomedical implants. J Mater Res Technol 3(3):203–209. https://doi.org/10.1016/j.jmrt.2014.03.007

    Article  CAS  Google Scholar 

  28. Jafari S, Harandi SE, Raman RKS (2015) A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM-Us 67(5):1143–1153. https://doi.org/10.1007/s11837-015-1366-z

    Article  CAS  Google Scholar 

  29. Berglund J, Guo Y, Wilcox JN (2009) Challenges related to development of bioabsorbable vascular stents. EuroIntervention Suppl 5:F72–F79

    Article  Google Scholar 

  30. Agarwal S, Curtin J, Duffy B, Jaiswal S (2016) Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 68:948–963. https://doi.org/10.1016/j.msec.2016.06.020

    Article  CAS  Google Scholar 

  31. Hanawa T (2009) Materials for metallic stents. J Artif Organs 12(2):73–79. https://doi.org/10.1007/s10047-008-0456-x

    Article  CAS  Google Scholar 

  32. Waksman R (2007) Promise and challenges of bioabsorbable stents. Catheter Cardiovasc Interv 70(3):407–414. https://doi.org/10.1002/ccd.21176

    Article  Google Scholar 

  33. Tenekecioglu E, Farooq V, Bourantas CV, Silva RC, Onuma Y, Yilmaz M, Serruys PW (2016) Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord. https://doi.org/10.1186/s12872-016-0207-5

    Article  Google Scholar 

  34. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028

    Article  CAS  Google Scholar 

  35. Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (2015) ASTM International, West Conshohocken, PA. https://doi.org/10.1520/B0557-15

  36. Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials (2017) ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E0021-17

  37. Mao L, Shen L, Chen JH, Zhang XB, Kwak M, Wu Y, Fan R, Zhang L, Pei J, Yuan GY, Song CL, Ge JB, Ding WJ (2017) A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Sci Rep-UK. https://doi.org/10.1038/srep46343

    Article  Google Scholar 

  38. Atrens A, Song G-L, Cao F, Shi Z, Bowen PK (2013) Advances in Mg corrosion and research suggestions. J Magnes Alloy 1(3):177–200. https://doi.org/10.1016/j.jma.2013.09.003

    Article  CAS  Google Scholar 

  39. ASM Handbook, Corrosion: fundamentals, testing, and protection (2003) Corrosion: fundamentals, testing, and protection. ASM International, Materials Park

    Google Scholar 

  40. Antunes RA, de Oliveira MCL (2012) Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater 8(3):937–962. https://doi.org/10.1016/j.actbio.2011.09.012

    Article  CAS  Google Scholar 

  41. Wang Y, Wei M, Gao JC, Hu JZ, Zhang Y (2008) Corrosion process of pure magnesium in simulated body fluid. Mater Lett 62(14):2181–2184. https://doi.org/10.1016/j.matlet.2007.11.045

    Article  CAS  Google Scholar 

  42. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  43. Chen QZ, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  44. Im SH, Jung Y, Kim SH (2017) Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater 60:3–22. https://doi.org/10.1016/j.actbio.2017.07.019

    Article  CAS  Google Scholar 

  45. Jiang W, Rutherford D, Vuong T, Liu H (2017) Nanomaterials for treating cardiovascular diseases: a review. Bioact Mater 2(4):185–198. https://doi.org/10.1016/j.bioactmat.2017.11.002

    Article  Google Scholar 

  46. Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710. https://doi.org/10.1016/j.biomaterials.2006.11.042

    Article  CAS  Google Scholar 

  47. Lipinski MJ, Escarcega RO, Lhermusier T, Waksman R (2014) The effects of novel, bioresorbable scaffolds on coronary vascular pathophysiology. J Cardiovasc Transl 7(4):413–425. https://doi.org/10.1007/s12265-014-9571-7

    Article  Google Scholar 

  48. Onuma Y, Muramatsu T, Kharlamov A, Serruys PW (2012) Freeing the vessel from metallic cage: what can we achieve with bioresorbable vascular scaffolds? Cardiovasc Interv Ther 27(3):141–154. https://doi.org/10.1007/s12928-012-0101-8

    Article  Google Scholar 

  49. Atrens A, Liu M, Abidin NIZ (2011) Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B 176(20):1609–1636. https://doi.org/10.1016/j.mseb.2010.12.017

    Article  CAS  Google Scholar 

  50. Vedani M, Ge Q, Wu W, Petrini L (2014) Texture effects on design of Mg biodegradable stents. Int J Mater Form 7(1):31–38. https://doi.org/10.1007/s12289-012-1108-5

    Article  Google Scholar 

  51. Li P, Zhou NL, Qiu H, Maitz MF, Wang J, Huang N (2018) In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Sci China Mater 61(4):501–515. https://doi.org/10.1007/s40843-017-9194-y

    Article  Google Scholar 

  52. Brie D, Penson P, Serban M-C, Toth PP, Simonton C, Serruys PW, Banach M (2016) Bioresorbable scaffold—a magic bullet for the treatment of coronary artery disease? Int J Cardiol 215:47–59. https://doi.org/10.1016/j.ijcard.2016.04.027

    Article  Google Scholar 

  53. Iqbal J, Onuma Y, Ormiston J, Abizaid A, Waksman R, Serruys P (2014) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35(12):765–776. https://doi.org/10.1093/eurheartj/eht542

    Article  Google Scholar 

  54. Boland EL, Shine R, Kelly N, Sweeney CA, McHugh PE (2016) A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann Biomed Eng 44(2):341–356. https://doi.org/10.1007/s10439-015-1413-5

    Article  Google Scholar 

  55. Bowen PK, Shearier ER, Zhao S, Guillory RJ, Zhao F, Goldman J, Drelich JW (2016) Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater 5(10):1121–1140. https://doi.org/10.1002/adhm.201501019

    Article  CAS  Google Scholar 

  56. Onuma Y, Ormiston J, Serruys PW (2011) Bioresorbable scaffold technologies. Circ J 75(3):509–520. https://doi.org/10.1253/circj.CJ-10-1135

    Article  CAS  Google Scholar 

  57. Kang J, Han JK, Yang HM, Park KW, Kang HJ, Koo BK, Kim HS (2017) Bioresorbable vascular scaffolds—are we facing a time of crisis or one of breakthrough? Circ J 81(8):1065–1074. https://doi.org/10.1253/circj.CJ-17-0152

    Article  Google Scholar 

  58. Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Brit Med Bull 106(1):193–211. https://doi.org/10.1093/bmb/ldt009

    Article  CAS  Google Scholar 

  59. Costopoulos C, Naganuma T, Latib A, Colombo A (2013) Looking into the future with bioresorbable vascular scaffolds. Expert Rev Cardiovasc Ther 11(10):1407–1416

    Article  CAS  Google Scholar 

  60. Garg S, Serruys PW (2010) Coronary stents: looking forward. J Am Coll Cardiol 56(10 Suppl):S43–S78. https://doi.org/10.1016/j.jacc.2010.06.008

    Article  CAS  Google Scholar 

  61. Foin N, Lee RD, Torii R, Guitierrez-Chico JL, Mattesini A, Nijjer S, Sen S, Petraco R, Davies JE, Di Mario C, Joner M, Virmani R, Wong P (2014) Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol 177(3):800–808. https://doi.org/10.1016/j.ijcard.2014.09.143

    Article  Google Scholar 

  62. Johnston S, Dargusch M, Atrens A (2018) Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Sci China Mater 61(4):475–500. https://doi.org/10.1007/s40843-017-9173-7

    Article  Google Scholar 

  63. Garcia-Garcia HM, Serruys PW, Campos CM, Muramatsu T, Nakatani S, Zhang YJ, Onuma Y, Stone GW (2014) Assessing bioresorbable coronary devices methods and parameters. JACC-Cardiovasc Imag 7(11):1130–1148. https://doi.org/10.1016/j.jcmg.2014.06.018

    Article  Google Scholar 

  64. Charpentier E, Barna A, Guillevin L, Juliard JM (2015) Fully bioresorbable drug-eluting coronary scaffolds: a review. Arch Cardiovasc Dis 108(6–7):385–397. https://doi.org/10.1016/j.acvd.2015.03.009

    Article  Google Scholar 

  65. Bourantas CV, Zhang Y, Farooq V, Garcia-Garcia HM, Onuma Y, Serruys PW (2012) Bioresorbable scaffolds: current evidence and ongoing clinical trials. Curr Cardiol Rep 14(5):626–634. https://doi.org/10.1007/s11886-012-0295-5

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by the sponsorship agreement in support of research and collaboration by Sidra Medicine, Doha, Qatar (Grant Number SIRF_200041) and Ooredoo. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lilia Aljihmani, Bilal Mansoor or Khalid Qaraqe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljihmani, L., Alic, L., Boudjemline, Y. et al. Magnesium-Based Bioresorbable Stent Materials: Review of Reviews. J Bio Tribo Corros 5, 26 (2019). https://doi.org/10.1007/s40735-019-0216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-019-0216-x

Keywords

Navigation