Skip to main content

Advertisement

Log in

A New Coastal Erosion Risk Assessment Indicator: Application to the Calabria Tyrrhenian Littoral (Southern Italy)

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

Littoral plains are exposed to natural phenomena, such as sea-waves, tides, rainfalls and sea-level rise, but also to human pressure, determining a growing exposure of the natural and man-made environments to hazard conditions. Through this work, a new kind of multiple approach is proposed to evaluate the coastal risk due to erosion processes, which was first tested on the Calabria Tyrrhenian coast. The resulting data show that 35% of the coastal stretches are classified into very high risk category, 30% into high risk, 28% into medium risk and only 7% into low risk. The coastal areas, characterized by high and very high levels of risk, are formed by sandy beaches and are distributed mainly at the northern side of the regional coastline while the southern part, distinguished mainly by rocky outlines, shows lower risk levels. The comparison between the calculated risk values and the real conditions of the damage state shows a good correspondence, testifying the pertinence of the new methodology. The latter is based on indices with data easily available, making the procedure fast and simple to use and applicable mainly in large scale surveys. The achieved good results suggest that the new methodology used to evaluate the coastal risk condition may be also extended to other Mediterranean beaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adger WN, Brooks N, Kelly M, Bentham S, Eriksen S (2004) New indicators of vulnerability and adaptive capacity. Tyndall Centre for Climate Change Research, technical report 7. University of East Anglia, Norwich, p 128

    Google Scholar 

  • Alberico I, Petrosino P (2015) The hazard indices as a tool to support the territorial planning: the case study of ischia island (southern Italy). Eng Geol 197:225–239

    Google Scholar 

  • Alberico I, Amato V, Aucelli PPC, Di Paola G, Papponem G, Rosskopf CM (2012) Historical and recent changes of the Sele River coastal plain (southern Italy): natural variations and human pressures. Rendiconti Lincei 23:3–12

    Google Scholar 

  • Alexandrakis G, Poulos SE (2014) An holistic approach to beach erosion vulnerability assessment. Sci Rep 4:6078

    Google Scholar 

  • Alpar B (2009) Vulnerability of Turkish coasts to accelerate sea-level rise. Geomorphology 107:58–63

    Google Scholar 

  • Aminti PL, Cammelli C, Cappietti L, Jackson NL, Nordstrom KF, Pranzini E (2004) Evaluation of beach response to submerged groin construction at Marina di Ronchi, Italy, using a field data and a numerical simulation model. J Coast Res Spec Issue 33:99–120

    Google Scholar 

  • Amodio ML, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccareta G, Russo M, Scandone P, Zanettin-Lorenzoni E, Zuppetta A (1976) L’arco Calabro-Peloritano nell’orogene Appenninico Maghrebide. Memorie. Società Geologica Italiana 17:1–60

    Google Scholar 

  • Anfuso G, Del Pozo JAM (2005) Towards management of coastal erosion problems and human structure impacts using GIS tools: case study in Ragusa Province, southern Sicily, Italy. Environ Geol 48:646–659

    Google Scholar 

  • Anfuso G, Del Pozo JAM (2009) Assessment of coastal vulnerability through the use of GIS tools in south Sicily (Italy). Environ Manag 43:533–545

    Google Scholar 

  • Antronico L, Borrelli L, Coscarelli L (2017) Recent damaging events on alluvial fans along a stretch of the Tyrrhenian coast of Calabria (southern Italy). Bull Eng Geol Environ 76(4):1399–1416

    Google Scholar 

  • Autorità di Bacino Regione Calabria (2016) Piano di Bacino Stralcio per l’Erosione Costiera, Burc n. 79 del 22 Luglio 2016, pp. 1–20

  • Bagdanavičiūtė I, Kelpšaitė L, Soomere T (2015) Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast Manag 104:124–135

    Google Scholar 

  • Barca D, Cirrincione R, De Vuono E, Fiannacca P, Ietto F, Lo Giudice A (2010) The Triassic rift system in the northern Calabrian-Peloritani Orogen: evidence from basaltic dyke magmatism in the San Donato Unit. Period Mineral 79(2):61–72

    Google Scholar 

  • Barnett J, Adger WN (2003) Climate dangers and atoll countries. Clim Chang 61:321–337

    Google Scholar 

  • Bellotti P, Caputo C, Davoli L, Evangelista S, Pugliese F (2009) Coastal protection in Tyrrhenian Calabria (Italy): morphological and sedimentological feedback on the vulnerable area of belvedere Marittimo. Geogr Fis Din Quat 32(1):3–14

    Google Scholar 

  • Benassai G, Di Paola G, Aucelli PPC (2015) Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean Coast Manag 104:22–35

    Google Scholar 

  • Bhalla R (2007) Do bio-shields affect tsunami inundation? Curr Biol 93:831–833

    Google Scholar 

  • Bi N, Yang Z, Wang H, Hu B, Ji Y (2010) Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period. Estuar Coast Shelf Sci 86(3):352–362

    Google Scholar 

  • Bittencourt ACSP, Dominguez JML, Martin L, Silva IR (2005) Longshore transport on the northeastern Brazilian coast and implications to the location of large scale accumulative and erosive zones: an overview. Mar Geol 219:219–234

    Google Scholar 

  • Borrelli L, Coniglio S, Critelli S, La Barbera A, Gullà G (2016) Weathering grade in granitoid rocks: the San Giovanni in Fiore area (Calabria, Italy). J Maps 12(2):260–275

    Google Scholar 

  • Bradley K, Houser C (2009) Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. J Geophys Res 114(F1):1–13

    Google Scholar 

  • Brown S, Barton M, Nicholls R (2011) Coastal retreat and/or advance adjacent to defences in England and Wales. J Coast Conserv 15:659–670

    Google Scholar 

  • Bruun P (1962) Sea level rise as a cause of shore erosion. Proceeding American Society of Civil Engineers, Journal of the Waterways and Harbors Division 88:117–130

    Google Scholar 

  • Bruun P (1995) The development of downdrift erosion. J Coast Res 11(4):1242–1257

    Google Scholar 

  • Bryant E (2005) Natural Hazards, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • C.N.R. (National Research Council) (1997) Atlante delle spiagge italiane. Tendenze evolutive - Opere umane. In: C.N.R. Progetto Finalizzato "Conservazione del suolo"- Sottoprogetto "Dinamica dei litorali". Ed. S.E.L.C.A., Firenze. Fogli: 220 Verbicaro, 228 Cetraro, 229 Paola, 236 Cosenza, 241 Nicastro. Scala 1:100.000

  • Cantasano N (2013) La gestione integrata delle zone costiere (GIZC): un nuovo modello di assetto territoriale. Biologi Italiani XLIII(5):31–41

    Google Scholar 

  • Cantasano N (2017) Sedimentazione nelle praterie di Posidonia oceanica (L.) Delile lungo le coste tirreniche calabresi. Biologi Italiani XLVII(1):51–58

    Google Scholar 

  • Cantasano N, Pellicone G, Ietto F (2017) Integrated coastal zone management in Italy: a gap between science and policy. J Coast Conserv 21:317–325

    Google Scholar 

  • Caputo C, D'Alessandro L, La Monica GNB, Landini B, Lupia Palmieri E (1989) Evolutive dynamics and erosion condition of the italian beaches. Zeitschrift für Geomorphologie N.F., Suppl Bd 81, 31–39

  • Castillo ME, Baldwin EM, Casarin RS, Vanegas GP, Juaréz MA (2012) Characterization of risks in coastal zone: a review. Clean–Soil, Air, Water 40(9):894–905

    Google Scholar 

  • Cocco E, Iuliano S (2002) Primi risultati delle ricerche sui sistemi costieri italiani (Prin 1998): casi studio lungo le coste dell’isola d’Ischia (Campania). Mem Soc Geol Ital 57:509–515

    Google Scholar 

  • Cochard R, Ranamukhaarachi SL, Shivakoti GP, Shipin OV, Edwards PJ, Seeland KT (2008) The 2004 tsunami in Aceh and southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspectives in Plant Ecolology, Evolution and Systematics 10:3–40

    Google Scholar 

  • Cooper JAG, McKenna J (2008) Social justice and coastal erosion management: the temporal and spatial dimensions. Geoforum 39:294–306

    Google Scholar 

  • Cooper J, McLaughlin S (1998) Contemporary multidisciplinary approaches to coastal classification and environmental risk analysis. J Coast Res 14(2):512–524

    Google Scholar 

  • Cori B (1999) Spatial dynamics of Mediterranean coastal regions. J Coast Conserv 5:105–112

    Google Scholar 

  • D’Alessandro F, Davoli L, Lupia Palmieri E, Raffi R (2002) Applied geomorphology: theory and practice. In: Allison RJ (ed) Natural and anthropogenic factors affecting the recent evolution of beaches in Calabria (Italy), Chichister, pp 397–427

    Google Scholar 

  • D'Alessandro L, Davoli L, Lupia Palmieri E, Raffi R (1998) L’erosione recente delle spiagge calabresi: cause naturali e antropiche. In: Società Geologica Italiana (Ed) 79° Congresso Società Geologica Italiana, Rome, pp 373–374

  • D'Alessandro F, Tomasicchio GR, Frega F, Carbone M (2011) Design and management aspects of a coastal protection system. A case history in the South of Italy. Journal of Coastal Research, suppl. Special Issue SI.64, 492–495

  • Dawson RJ, Dickson M, Nicholls RJ, Hall J (2009) Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Clim Chang 95(1–2):249–288

    Google Scholar 

  • Denner K, Phillips ME, Jenkins RE, Thomas T (2015) A coastal vulnerability and environmental risk assessment of Loughor estuary, South Wales. Ocean Coast Manag 116:478–490

    Google Scholar 

  • Di Paola G, Aucelli PPC, Benassai G, Rodríguez G (2013) Coastal vulnerability to wave storms of Sele littoral plain (southern Italy). Nat Hazards 71:1795–1819

    Google Scholar 

  • Diez PG, Perillo GME, Piccolo C (2007) Vulnerability to sea-level rise on the coast of the Buenos Aires Province. J Coast Res 23(1):119–126

    Google Scholar 

  • Domínguez L, Anfuso G, Gracia FJ (2005) Vulnerability assessment of a retreating coast in SW Spain. Environ Geol 47:1037–1044

    Google Scholar 

  • European Commission (2002) Towards Environmental Performance Indicators for the European Union (EU). A European system of environmental indicators. Available from http://www.e-m-a-i-l.nu/tepi/firstpub.htm. Accessed 01 March 2017

  • European Commission (2007) Directive 2007/60/EC of the European parliament and of the council of 23 October 2007 on the assessment and management of flood risks. Off J Eur Union 288:27–34

    Google Scholar 

  • European Commission (2008) Directive 2008/56/EC of the European Parliament and of the council of 17 June 2008 establishing a framework for community action on the field of marine environmental policy (marine strategy framework directive). Off J Eur Union 164:19–40

    Google Scholar 

  • European Commission (2011) Joint Research Center, Technical Notes. Coastal Zones. Available from http://ies.jrc.ec.europa.eu/

  • Feagin RA, Smith WK, Psuty NP, Young DR, Martinez ML, Carter GA, Lucas KL, Gibeaut JC, Gemma JN, Koske RE (2010) Barrier islands: coupling anthropogenic stability with ecological sustainability. J Coast Res 26:987–992

    Google Scholar 

  • Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by 4 species of seagrass. Estuar Coast Shelf Sci 35:565–576

    Google Scholar 

  • Forbes C (2009) The effects of climate change induced coastal inundation. National Environmental Law Review 4:44–57

    Google Scholar 

  • Galgano FA (2004) Long-term effectiveness of a groin and beach fill system: a case study using shoreline change maps. J Coast Res 33:3–18

    Google Scholar 

  • GNRAC (2006) Lo stato dei litorali in Italia. Studi Costieri 10:3–172

    Google Scholar 

  • Gornitz V (1990) Vulnerability of the East Coast, USA to future sea level rise. J Coast Res Spec Issue 9:201–237

    Google Scholar 

  • Gornitz VM, Daniels RC, White TM, Birdwell KR (1994) The development of a coastal risk database for the U.S. Southeast: erosion and inundation form sea level rise. Journal of Coastal Research (SI12), 327–338

  • Gornitz VM, Beaty TW, Daniels RC (1997) A coastal hazards data-base for the U.S. West Coast. ORNL/CDIAC-81, NDP-043C. Oak ridge national laboratory, Oak ridge, Tennessee, United States of America

  • Greco M, Martino G (2016) Vulnerability assessment for preliminary flood risk mapping and management in coastal areas. Nat Hazards 82:S7–S26

    Google Scholar 

  • Guiducci F, Paolella G (2004) Learning from 20 years of design and realization on coastal protection over the Tyrrhenian Calabrian coast. In: 29th ICCE International Conference on Coastal Engineering. World Scientific Press (Ed), Lisbon, pp 3826–3838

  • Harvey N, Clouston B, Carvalho P (1999) Improving coastal vulnerability assessment methodologies for integrated coastal zone management: an approach from South Australia. Aust Geogr Stud 37(1):50–69

    Google Scholar 

  • Hedge AV, Rejn VR (2007) Development of coastal vulnerability index for Mangalore coast, India. J Coast Res 23(5):1106–1111

    Google Scholar 

  • Hsu JRC, Uda T, Silvester R (1993) Beaches downcoast of harbours in bays. Coast Eng 19(1–2):163–181

    Google Scholar 

  • Hughes P, Brundrit GB (1992) An index to assess South Africa’s vulnerability to sea-level-rise. S Afr J Sci 88:308–311

    Google Scholar 

  • Hugo G (2011) Future demographic change and its interactions with migration and climate change. Glob Environ Chang 21(Supplement 1):S21–S33

    Google Scholar 

  • Ietto F (2001) Evoluzione delle spiagge tirreniche nord calabresi negli ultimi 50 anni. Italian Journal of Quaternary. Science 14(2):105–116

    Google Scholar 

  • Ietto F, Le Pera E, Caracciolo L (2012a) Geomorphology and sand provenance of the Tyrrhenian coast between capo Suvero and Gizzeria (Calabria, southern Italy). Rend Online Soc Geol Ital 21:487–488

    Google Scholar 

  • Ietto F, Parise M, Ponte M, Calcaterra D (2012b) Geotechnical characterization and landslides in the weathered granitoids of Calabria (southern Italy). Rend Online Soc Geol Ital 21:551–553

    Google Scholar 

  • Ietto F, Le Pera E, Perri F (2013) Weathering of the ‘Rupe di Tropea’ (southern Calabria): consolidation criteria and erosion-rate estimate. Rend Online Soc Geol Ital 24:178–180

    Google Scholar 

  • Ietto F, Cantasano N, Salvo F (2014) The quality of life conditioning with reference to the local environmental management: a pattern in Bivona country (Calabria, southern Italy). Ocean Coast Manag 102:340–349

    Google Scholar 

  • Ietto F, Perri F, Fortunato G (2015) Lateral spreading phenomena and weathering processes from the Tropea area (Calabria, southern Italy). Environ Earth Sci 73(8):4595–4608

    Google Scholar 

  • Ietto F, Perri F, Cella F (2016a) Geotechnical and landslide aspects in weathered granitoid rock masses (serre massif, southern Calabria, Italy). Catena 145:301–315

    Google Scholar 

  • Ietto F, Le Pera E, Miriello D, Ruffolo SA, Perri F (2016b) Behaviour of epoxide resin used to protect the “Rupe di Tropea” (southern Calabria, Italy). Rend Online Soc Geol Ital 38:69–72

    Google Scholar 

  • Ietto F, Perri F, Miriello D, Ruffolo SA, Laganà A, Le Pera E (2017) Epoxy resin for the slope consolidation intervention on the Tropea sandstone cliff (southern Calabria, Italy). Geoheritage. https://doi.org/10.1007/s12371-017-0235-2

  • Ietto F, Perri F, Cella F (2018) Weathering characterization for landslides modeling in granitoid rock masses of the capo Vaticano promontory (Calabria, Italy). Landslides 15:43–62

    Google Scholar 

  • IPCC (2014) Intergovernmental panel on climate change. In: Pachauri R, Meyer L (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, pp 151

  • ISO/IEC (2009) ISO Guide 73 Risk Management and Vocabulary. http://www.iso.org. Accessed 01 March 2017

  • ISPRA (2013) Annuario dei dati ambientali. Stato dell’Ambiente 47/2013. ISPRA, Rome, 31 pp.

  • Jeftic L, Milliman JD, Sestini G (1992) Climate change and the Mediterranean. Edward Arnold (Ed), London 673 pp

    Google Scholar 

  • Jones RN, Boer R (2004) Assessing current climate risks. In: Adaptation policy frameworks for climate change: developing strategies, policies and measures. Lim B, Spanger-Siegfried E, Burton I, Malone E, Huq S., (Eds), Technical Paper 4, Cambridge University Press, Cambridge, pp 91–117

  • Koch EW, Gust G (1999) Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 184:63–72

    Google Scholar 

  • Koch EW, Ackerman J, Verduin J, Keulen M (2006) Seagrasses: biology, ecology and conservation. In: Larkun AWD, Orth RJ, Duarte CM (eds) Fluid dynamics in seagrass ecology – from molecules to ecosystem. Springer, Netherlands, pp 193–225

    Google Scholar 

  • La Monica GB, Landini B (1983) Proceedings of 23th Congr. Geogr. It. In: Tendenze evolutive delle coste basse della penisola italiana, Istituto di Geografia, Facoltà di Lettere e Filosofia, Università di Catania (Ed.), Catania, pp 209–217

  • Larroudé P, Oudart T, Daou M, Robin N, Certain R (2014) Three simple indicators of vulnerability to climate change on a Mediterranean beach: a modelling approach. Ocean Eng 76:172–182

    Google Scholar 

  • Le Pera E, Sorriso Valvo M (2000) Weathering and morphogenesis in a Mediterranean climate, Calabria, Italy. Geomorphology 34:251–270

    Google Scholar 

  • Lichter M, Felsenstein D (2012) Assessing the costs of sea-level rise and extreme flooding at the local level: a GIS-based approach. Ocean Coast Manag 59:47–62

    Google Scholar 

  • Lickley MJ, Lin N, Jacoby HD (2014) Analysis of coastal protection under rising flood risk. Climate Risk Management 6:18–26

    Google Scholar 

  • Loinenak FA, Hartoko A, Muskaananfola MR (2015) Mapping of coastal vulnerability using the coastal vulnerability index and geographic information system. Int J Technol 5:819–827

    Google Scholar 

  • Luo S, Wang H, Cai F (2013) An integrated risk assessment of coastal erosion based on fuzzy set theory along Fujian coast, southeast chine. Ocean. Coast Manag 84:68–76

    Google Scholar 

  • Martínez JA, Anfuso G (2008) Spatial approach to medium-term coastal evolution in south Sicily (Italy): implications for coastal erosion management. J Coast Res 24(1):33–42

    Google Scholar 

  • Martínez-Graña AM, Boski T, Goy JL, Zazo C, Dabrio CJ (2016) Coastal flood risk management in Central Algarve: vulnerability and flood risk indices (South Portugal). Ecol Indic 71:302–316

    Google Scholar 

  • McGranahan G, Bolk D, Anderson D (2007) The rising tide: assessing the risk of climate change and human settlements in low elevation coastal zone. Environ Urban 19:17–37

    Google Scholar 

  • McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environmental Hazard 9(3):233–248

    Google Scholar 

  • Medatlas Group (2004) Wind and wave atlas of the Mediterranean Sea. Western European Union, WEAO Research Cell

    Google Scholar 

  • Mokrech M, Hanson S, Nicholls RJ, Wolf J et al (2011) The Tyndall coastal simulator. J Coast Conserv 15(3):325–335

    Google Scholar 

  • Mura PM (1995) At the bottom of the arc: the Calabria region. In: Cortesi G (ed) Urban change and the environment. The case of north-western Mediterranean, Milan, pp 231–268

    Google Scholar 

  • Nicholls RJ, Hoozemans FMJ (1996) The Mediterranean: vulnerability to coastal implications of climate change. Ocean Coast Manag 31(2–3):105–132

    Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JE, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hansen CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Ogniben L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Mem Soc Geol Ital 8:453–763

    Google Scholar 

  • Ozyurt G (2007) Vulnerability of coastal areas to sea level rise: a case study on Göksu Delta. Ankara, Turkey. Middle East Technical University. Master’s Thesis, 300 pp.

  • PAI (2015) Piano di Bacino Stralcio per l’erosione costiera – Relazione di Piano. Autorità di Bacino – Regione Calabria, pp 1–36

  • Parry M, Canziani O, Palutikof J, van der Linden P, Hansen C (2007) Climate change 2007: impacts, adaptation and vulnerability, contribution of the working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–357

    Google Scholar 

  • Parthasarathy A, Natesan U (2015) Coastal vulnerability assessment: a case study on erosion and coastal change along Tuticorin, gulf of Mannar. Nat Hazards 75:1713–1729

    Google Scholar 

  • Pellegrino A, Prestininzi A (2007) Impact of weathering geomechanical properties of rocks along thermal-metamorphic contact belts and morpho-evolutionary processes: the deep-seated gravitational slope deformations of Mt. Granieri-Salincriti (Calabria-Italy). Geomorphology 87:176–195

    Google Scholar 

  • Perri F, Ietto F, Le Pera E, Apollaro C (2016) Weathering processes affecting granitoid profiles of capo Vaticano (Calabria, southern Italy) based on petrographic, mineralogic and reaction path modelling approaches. Geol J 51(3):368–386

    Google Scholar 

  • Pompe JJ, Rinchart JR (2008) Mitigating damage costs from hurricane strikes along the southern-eastern US coast: a role for insurance markets. Ocean Coast Manag 51:782–788

    Google Scholar 

  • Pranzini E, Rossi L (2014) Protocollo per il monitoraggio dell’evoluzione costiera. In: Cipriani (Ed.), Monitoraggio dell’erosione costiera - una rete di osservatori regionali, Progetto Res. Mar. pp 8–12

  • Quelennec R (1989) The CORINE coastal erosion project. Identification of coastal erosion problems and database on the littoral environment of eleven European countries. In: University of California (ed) Proceedings of 6th Symposium on Coastal and Ocean Management (Coastal Zone ‘89), Charleston, South Carolina, pp 4594–4601

  • RON (Rete Ondametrica Nazionale) (2007) In: Istituto Superiore per la Protezione e la Ricerca dell’Ambiente (ISPRA). Available at: http://www.mareografico.it/. Accessed 01/03/2017

  • Rosenberg DE, Kopp K, Kratsch HA, Rupp L, Johnson P, Kjelgren R (2011) Value landscape engineering: identifying coasts, water use, labor and inputs to support landscape choice. J Am Water Resour Assoc (JAWRA) 47(3):635–649

    Google Scholar 

  • Samaras AG, Koutitas CG (2012) An integrated approach to quantify the impact of watershed management on coastal morphology. Ocean Coast Manag 69:68–77

    Google Scholar 

  • Samaras AG, Koutitas CG (2014) The impact of watershed management on coastal morphology. A case study using an integrated approach and numerical modeling. Geomorphology 211:52–63

    Google Scholar 

  • Sano M, Gainza J, Baum S, Choy DL, Neumann S, Tomlinson R (2015) Coastal vulnerability and progress in climate change adaptation: an Australian case study. Regional Studies in Marine Science 2:113–123

    Google Scholar 

  • Sarma KGS (2015) Siltation and coastal erosion at shoreline harbours. In: Proceeding of the 8th International Conference on Asian and Pacific Coasts (APAC Ed). Procedia Engineering 116, 12–19

  • Saville T (1954) The effect of fetch width on wave generation. U.S. Army Coastal Engineering Research Centre, Tech. Memorandum No. 70, pp 10

  • Saye SE, van der Wal D, Pye K, Blott SJ (2005) Beach–dune morphological relationships and erosion/accretion: an investigation at five sites in England and Wales using LIDAR data. Geomorphology 72(1–4):128–155

    Google Scholar 

  • Scandone P (1982) Structure and evolution of the Calabrian Arc. Earth Evolution Sciences 3:172–180

    Google Scholar 

  • Semedi B, Husain BH, Hidayati N (2016) Analyzing coastal vulnerability index using integrated satellite remote sensing and geographic information system: a case study of Denpasar coastal zone. J Appl Environ Biol Sci 6(4):35–40

    Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19:584–599

    Google Scholar 

  • Spalding MD, Ruffo S, Lacambra C, Meliane I, Hale LZ, Shepard CC, Beck MW (2014) The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean Coast Manag 90:50–57

    Google Scholar 

  • Stancheva M, Rangel-Buitrago N, Anfuso G, Palazov A, Stanchev H, Correa I (2011) Expanding level of coastal armouring: case studies from different countries. J. Coast. Res. 1815-1819, SI 64 (Proceedings of the 11th International Coastal Symposium), Szczecin

  • Sudha Rani NNV, Satyanarayana ANV, Bhaskaran PK (2015) Coastal vulnerability assessment studies over India: a review. Nat Hazards 77:405–428

    Google Scholar 

  • Titus JG, Hudgens DE, Trescott DL, Craghan M, Nuckols WH, Hershner CH, Kassakian JM, Liun CJ, Merritt PG, McCue TM, O’Connell JFO, Tanski J, Wang J (2009) State and local governments plan for development of most land voluble to rising sea level along the US Atlantic coast. Environ Res Lett 4:1–7

    Google Scholar 

  • Tran P, Shaw R (2007) Towards an integrated approach of disaster and environment management: a case study of Thua Thien Hue Province, Central Viet Nam. Environmental Hazards 7:271–282

    Google Scholar 

  • Tsoukala VK, Katsardi V, Hadjibiros K, Moutzouris CI (2015) Beach erosion and consequential impacts due to the presence of harbours in sandy beaches in Greece and Cyprus. Environmental Processes 2(1):55–71

    Google Scholar 

  • Uda T (2010) Japan’s beach erosion: reality and future measures. World Scientific Publishing, Singapore, 417 pp.

  • UNISDR (2009) United Nations International Strategy for Disaster Reduction, Geneva, pp. 1–35

  • Vai GB (1992) Il segmento Calabro-Peloritano dell'orogene ercinico. Disaggregazione palinspastica. Boll Soc Geol Ital 111:109–129

    Google Scholar 

  • Veltri P, Morosini AF (2002) Una procedura per la stima del rischio di erosione costiera: un caso di studio. In: Bios (Ed), 28th Convegno di Idraulica e Costruzioni idrauliche, Potenza, pp 1–10

  • Weis SW, Agostini VN, Roth LM, Gilmer B, Schill SR, Knowles JE, Blyther R (2016) Assessing vulnerability: an integrated approach for mapping adaptive capacity, sensitivity, and exposure. Climate Change 136:615–629

    Google Scholar 

  • Williams AT, Davies P, Curr R, Koh A, Bodere J, Hallegouet B, Meur C, Yoni C (1993) A checklist assessment of dune vulnerability and protection in Devon and Cornwall (UK). In: Magoon OT (ed) Proceedings of 10th Symposium on Coastal and Ocean Management (Coastal Zone ‘93), American Society of Civil Engineering, New York, pp 3394–3408

    Google Scholar 

  • Wong PP, Lee BT, Leung MHT (2006) Hot spots of population growth and urbanization in the Asia-Pacific coastal zone. In: Harvey (ed) Global change and integrated coastal management. Springer, Dordrecht, pp 161–193

  • Zanuttigh B, Simcic D, Bagli S, Bozzeda F, Pietrantoni L, Zagonari F, Hoggart S, Nicholls RJ (2014) THESEUS decision support system for coastal risk management. Coast Eng 87:218–239

    Google Scholar 

Download references

Acknowledgements

This research was carried out within the MIUR-ex 60% Project (Resp. F. Ietto). The authors are indebted to the three anonymous referees for their comments and useful suggestions, which were constructive and useful at improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Cantasano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ietto, F., Cantasano, N. & Pellicone, G. A New Coastal Erosion Risk Assessment Indicator: Application to the Calabria Tyrrhenian Littoral (Southern Italy). Environ. Process. 5, 201–223 (2018). https://doi.org/10.1007/s40710-018-0295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-018-0295-6

Keywords

Navigation