Skip to main content
Log in

Sleep is Essential for Mental Health: Potential Role of Slow Oscillations

  • REVIEW
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sleep is a physiological process characterized by a crucial interaction between behavioural and neurobiological aspects, thereby directly influencing mental functionality. The present work aims at providing an overview of the structure, topological distribution, and functions of the sleep slow oscillation (< 1 Hz), and at attempting to unveil how the mechanisms underlying its properties are altered in several mental disorders.

Recent Findings

Slow wave sleep and especially the sleep slow oscillation appear to regulate essential mechanisms at the basis of neuronal and synaptic health, such as an efficient functional connectivity, brain plasticity, memory consolidation, metabolic clearance, and sleep maintenance. Alterations of these functions can be observed at various levels in a wide range of mental disorders, ranging from insomnia to overt psychiatric disorders.

Summary

We propose a guidance for research and clinical practice related to the sleep slow oscillation, considering the lack of clinical emphasis on this wave and highlighting the potential benefits of its direct non-invasive modulation. In this framework, we propose that targeting insomnia would be crucial for mental health by regulating the sleep slow oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Majde JA, Krueger JM. Links between the innate immune system and sleep. J Allergy Clin Immunol. 2005;116:1188–98.

    Article  CAS  PubMed  Google Scholar 

  2. Siclari F, Tononi G (2016) Chapter 7 — sleep and dreaming. In: Laureys S, Gosseries O, Tononi G (eds) Neurol. Conciousness Second Ed. Academic Press, San Diego, pp 107–128

  3. • Palagini L, Hertenstein E, Riemann D, Nissen C. Sleep, insomnia and mental health. J Sleep Res. 2022;31:e13628. This review highlights how insomnia disorder represents a transdiagnostic symptom for many psychiatric disorders, as well as marker of disrupted neuroplasticity and dysregulation of different neurobiological mechanisms involved in several mental conditions. In this framework, treating insomnia may offer new future directions for integrated and non-pharmacological treatments of psychiatric disorders.

    Article  PubMed  Google Scholar 

  4. Tubbs AS, Dollish HK, Fernandez F, Grandner MA. Chapter 1 — the basics of sleep physiology and behavior. In: Grandner MA, editor. Sleep Health. Academic Press; 2019. p. 3–10.

    Google Scholar 

  5. Xiao X, Rui Y, Jin Y, Chen M. Relationship of sleep disorder with neurodegenerative and psychiatric diseases: an updated review. Neurochem Res. 2023. https://doi.org/10.1007/s11064-023-04086-5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology. 2023;48:113–20. This review comprehensively explores the mechanisms of neural plasticity and provides insights into the historical progression and future directions of techniques enabling the imaging of synaptic changes associated with psychiatric disorders. The review also emphasizes emerging therapeutics and discusses the challenges and opportunities in this rapidly evolving field of study.

    Article  PubMed  Google Scholar 

  7. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (2001) Stages of Sleep. Neurosci. 2nd Ed.

  8. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Genzel L, Kroes MCW, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 2014;37:10–9.

    Article  CAS  PubMed  Google Scholar 

  10. Steriade M, Nuñez A, Amzica F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci Off J Soc Neurosci. 1993;13:3252–65.

    Article  CAS  Google Scholar 

  11. Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc Natl Acad Sci. 2009;106:1608–13.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menicucci D, Piarulli A, Allegrini P, Laurino M, Mastorci F, Sebastiani L, Bedini R, Gemignani A. Fragments of wake-like activity frame down-states of sleep slow oscillations in humans: new vistas for studying homeostatic processes during sleep. Int J Psychophysiol. 2013;89:151–7.

    Article  PubMed  Google Scholar 

  13. Gemignani A, Menicucci D, Laurino M, Piarulli A, Mastorci F, Sebastiani L, Allegrini P. Linking Sleep Slow Oscillations with consciousness theories: new vistas on Slow Wave Sleep unconsciousness. Arch Ital Biol. 2015;153:135–43.

    PubMed  Google Scholar 

  14. Menicucci D, Piarulli A, Laurino M, Zaccaro A, Agrimi J, Gemignani A. Sleep slow oscillations favour local cortical plasticity underlying the consolidation of reinforced procedural learning in human sleep. J Sleep Res. 2020;29:e13117.

    Article  PubMed  Google Scholar 

  15. Baglioni C, Nanovska S, Regen W, Spiegelhalder K, Feige B, Nissen C, Reynolds CF III, Riemann D. Sleep and mental disorders: a meta-analysis of polysomnographic research. Psychol Bull. 2016;142:969–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Laurino M, Menicucci D, Piarulli A, Mastorci F, Bedini R, Allegrini P, Gemignani A. Disentangling different functional roles of evoked K-complex components: mapping the sleeping brain while quenching sensory processing. Neuroimage. 2014;86:433–45.

    Article  PubMed  Google Scholar 

  17. Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci. 2010;13:9–17.

    Article  CAS  PubMed  Google Scholar 

  18. Gemignani A, Laurino M, Provini F, et al. Thalamic contribution to Sleep Slow Oscillation features in humans: a single case cross sectional EEG study in Fatal Familial Insomnia. Sleep Med. 2012;13:946–52.

    Article  PubMed  Google Scholar 

  19. Menicucci D, Piarulli A, Debarnot U, d’Ascanio P, Landi A, Gemignani A. Functional structure of spontaneous sleep slow oscillation activity in humans. PLoS ONE. 2009;4:e7601.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Yoshida K, Shi S, Ukai-Tadenuma M, Fujishima H, Ohno R, Ueda HR. Leak potassium channels regulate sleep duration. Proc Natl Acad Sci. 2018;115:E9459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ode KL, Katsumata T, Tone D, Ueda HR. Fast and slow Ca2+-dependent hyperpolarization mechanisms connect membrane potential and sleep homeostasis. Curr Opin Neurobiol. 2017;44:212–21.

    Article  CAS  PubMed  Google Scholar 

  22. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137:1087–106.

    Article  CAS  PubMed  Google Scholar 

  23. Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93:681–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34:1411–21.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L, Vadera S, Walker MP, Lin JJ, Knight RT. Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nat Commun. 2019;10:3572.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Halonen R, Kuula L, Lahti J, Räikkönen K, Pesonen A-K. The association between overnight recognition accuracy and slow oscillation-spindle coupling is moderated by BDNF Val66Met. Behav Brain Res. 2022;428:113889.

    Article  CAS  PubMed  Google Scholar 

  28. Cash SS, Halgren E, Dehghani N, et al. The human K-complex represents an isolated cortical down-state. Science. 2009;324:1084–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R. Inhibitory modulation of cortical up states. J Neurophysiol. 2010;104:1314–24.

    Article  PubMed  Google Scholar 

  30. Jenkins JG, Dallenbach KM. Obliviscence during sleep and waking. Am J Psychol. 1924;35:605–12.

    Article  Google Scholar 

  31. Huber R, Felice Ghilardi M, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430:78–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. • Menicucci D, Lunghi C, Zaccaro A, Morrone MC, Gemignani A. Mutual interaction between visual homeostatic plasticity and sleep in adult humans. ELife. 2022;11:e70633. The authors report a correlation between individual susceptibility to visual homeostatic plasticity after deprivation and the changes in occipital sleep slow oscillations and spindle power, in line with a slow-wave sleep-driven modulation occurring in the early occipital visual cortex.

  33. Rozov AV, Valiullina FF, Bolshakov AP. Mechanisms of long-term plasticity of hippocampal GABAergic synapses. Biochem Mosc. 2017;82:257–63.

    Article  CAS  Google Scholar 

  34. Bliss TVP, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vinogradova OS. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus. 2001;11:578–98.

    Article  CAS  PubMed  Google Scholar 

  36. Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan W-B. Sleep promotes branch-specific formation of dendritic spines after learning. Science. 2014;344:1173–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aton SJ, Suresh A, Broussard C, Frank MG. Sleep promotes cortical response potentiation following visual experience. Sleep. 2014;37:1163–70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Timofeev I, Chauvette S. Sleep slow oscillation and plasticity. Curr Opin Neurobiol. 2017;44:116–26.

    Article  CAS  PubMed  Google Scholar 

  39. Bushey D, Tononi G, Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science. 2011;332:1576–81.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200–8.

    Article  CAS  PubMed  Google Scholar 

  41. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64:238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kossel AH, Cambridge SB, Wagner U, Bonhoeffer T. A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation. Proc Natl Acad Sci U S A. 2001;98:14702–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci Off J Soc Neurosci. 2008;28:4088–95.

    Article  CAS  Google Scholar 

  44. Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995;267:1658–62.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Knipper M, da Penha BM, Blöchl A, Breer H, Thoenen H, Lindholm D. Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci. 1994;6:668–71.

    Article  CAS  PubMed  Google Scholar 

  46. Sala R, Viegi A, Rossi FM, Pizzorusso T, Bonanno G, Raiteri M, Maffei L. Nerve growth factor and brain-derived neurotrophic factor increase neurotransmitter release in the rat visual cortex. Eur J Neurosci. 1998;10:2185–91.

    Article  CAS  PubMed  Google Scholar 

  47. Wardle RA, Poo M. Brain-derived neurotrophic factor modulation of GABAergic synapses by postsynaptic regulation of chloride transport. J Neurosci Off J Soc Neurosci. 2003;23:8722–32.

    Article  CAS  Google Scholar 

  48. Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R, Maffei L. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci. 2007;10:679–81.

    Article  CAS  PubMed  Google Scholar 

  49. Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001;85:1969–85.

    Article  CAS  PubMed  Google Scholar 

  50. Akaneya Y, Tsumoto T, Kinoshita S, Hatanaka H. Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci Off J Soc Neurosci. 1997;17:6707–16.

    Article  CAS  Google Scholar 

  51. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342. https://doi.org/10.1126/science.1241224.

  52. Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, Lewis LD. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366:628–31.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Varga AW, Wohlleber ME, Giménez S, et al. Reduced slow-wave sleep is associated with high cerebrospinal fluid Aβ42 levels in cognitively normal elderly. Sleep. 2016;39:2041–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ju Y-ES, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain. 2017;140:2104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lucey BP, McCullough A, Landsness EC, et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med. 2019;11:eaau6550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winer JR, Mander BA, Kumar S, Reed M, Baker SL, Jagust WJ, Walker MP. Sleep disturbance forecasts β-amyloid accumulation across subsequent years. Curr Biol. 2020;30:4291-4298.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lim MM, Gerstner JR, Holtzman DM. The sleep–wake cycle and Alzheimer’s disease: what do we know? Neurodegener Dis Manag. 2014;4:351–62.

    Article  PubMed  Google Scholar 

  58. Ju Y-ES, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, Morris JC, Holtzman DM. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 2013;70:587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yulug B, Hanoglu L, Kilic E. Does sleep disturbance affect the amyloid clearance mechanisms in Alzheimer’s disease? Psychiatry Clin Neurosci. 2017;71:673–7.

    Article  PubMed  Google Scholar 

  60. Krell-Roesch J, Syrjanen JA, Rakusa M, et al. Association of cortical and subcortical β-amyloid with standardized measures of depressive and anxiety symptoms in adults without dementia. J Neuropsychiatry Clin Neurosci. 2021;33:64–71.

    Article  PubMed  Google Scholar 

  61. Li P, Hsiao I-T, Liu C-Y, Chen C-H, Huang S-Y, Yen T-C, Wu K-Y, Lin K-J. Beta-amyloid deposition in patients with major depressive disorder with differing levels of treatment resistance: a pilot study. EJNMMI Res. 2017. https://doi.org/10.1186/s13550-017-0273-4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wegiel J, Frackowiak J, Mazur-Kolecka B, et al. Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLOS ONE. 2012;7:e35414.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP. Prefrontal atrophy, disrupted NREM slow waves, and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16:357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bennett ML, Viaene AN. What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis. 2021;148:105172.

    Article  CAS  PubMed  Google Scholar 

  66. Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, Hyman BT. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol. 2013;72:462–71.

    Article  CAS  PubMed  Google Scholar 

  67. Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53:151–71.

    Article  CAS  PubMed  Google Scholar 

  68. Vallée A. Neuroinflammation in schizophrenia: the key role of the WNT/β-catenin pathway. Int J Mol Sci. 2022;23:2810.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Eissa N, Sadeq A, Sasse A, Sadek B. Role of neuroinflammation in autism spectrum disorder and the emergence of brain histaminergic system. Lessons Also for BPSD? Front Pharmacol. 2020;11. https://doi.org/10.3389/fphar.2020.00886.

  70. Won E, Kim Y-K. Neuroinflammation-associated alterations of the brain as potential neural biomarkers in anxiety disorders. Int J Mol Sci. 2020;21:6546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  72. Harvey AG, Murray G, Chandler RA, Soehner A. Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin Psychol Rev. 2011;31:225–35.

    Article  PubMed  Google Scholar 

  73. •• Hogan SE, Delgado GM, Hall MH, Nimgaonkar VL, Germain A, Buysse DJ, Wilckens KA. Slow-oscillation activity is reduced and high frequency activity is elevated in older adults with insomnia. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2020;16:1445–54. This study distinguished EEG subcomponents of slow-wave activity in the attempt of understanding the discrepancies found in insomnia disorders. The results highlighted that deficits in sleep EEG slow frequencies in insomnia are specific to the slow oscillations (<1 Hz).

    Google Scholar 

  74. Zhang J, Kendrick KM, Lu G. Feng J (2015) The fault lies on the other side: altered brain functional connectivity in psychiatric disorders is mainly caused by counterpart regions in the opposite hemisphere. Cereb Cortex N Y N. 1991;25:3475–86.

    Article  Google Scholar 

  75. Baglioni C, Regen W, Teghen A, Spiegelhalder K, Feige B, Nissen C, Riemann D. Sleep changes in the disorder of insomnia: a meta-analysis of polysomnographic studies. Sleep Med Rev. 2014;18:195–213.

    Article  PubMed  Google Scholar 

  76. Aquino G, Benz F, Dressle RJ, Gemignani A, Alfì G, Palagini L, Spiegelhalder K, Riemann D, Feige B. Towards the neurobiology of insomnia: a systematic review of neuroimaging studies. Sleep Med Rev. 2024;73:101878.

    Article  PubMed  Google Scholar 

  77. Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry. 2019;24:694–709.

    Article  CAS  PubMed  Google Scholar 

  78. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: state of the art. Sleep Med Rev. 2013;17:377–90.

    Article  PubMed  Google Scholar 

  79. Gillin JC, Sitaram N, Mendelson WB. Acetylcholine, sleep, and depression. Hum Neurobiol. 1982;1:211–9.

    CAS  PubMed  Google Scholar 

  80. Riemann D, Joy D, Höchli D, Lauer C, Zulley J, Berger M. Influence of the cholinergic agonist RS 86 on normal sleep: sex and age effects. Psychiatry Res. 1988;24:137–47.

    Article  CAS  PubMed  Google Scholar 

  81. Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W. The role of K2p channels in anaesthesia and sleep. Pflugers Arch. 2015;467:907–16.

    Article  CAS  PubMed  Google Scholar 

  82. Yu H, Chen Z. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2011;32:3–11.

    Article  CAS  PubMed  Google Scholar 

  83. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat. 2015;72:603–11.

    Article  Google Scholar 

  84. Hager B, Yang AC, Brady R, Meda S, Clementz B, Pearlson GD, Sweeney JA, Tamminga C, Keshavan M. Neural complexity as a potential translational biomarker for psychosis. J Affect Disord. 2017;216:89–99.

    Article  PubMed  Google Scholar 

  85. Pijnenborg GHM, Larabi DI, Xu P, Hasson-Ohayon I, de Vos AE, Ćurčić-Blake B, Aleman A, Van der Meer L. Brain areas associated with clinical and cognitive insight in psychotic disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2020;116:301–36.

    Article  CAS  PubMed  Google Scholar 

  86. Yang AC, Tsai S-J. Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:253–7.

    Article  PubMed  Google Scholar 

  87. Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev. 2011;35:848–70.

    Article  CAS  PubMed  Google Scholar 

  88. Hull JV, Dokovna LB, Jacokes ZJ, Torgerson CM, Irimia A, Van Horn JD. Resting-state functional connectivity in autism spectrum disorders: a review. Front. Psychiatry. 2017;7. https://www.frontiersin.org/articles/10.3389/fpsyt.2016.00205.

  89. Chellappa SL, Aeschbach D. Sleep and anxiety: from mechanisms to interventions. Sleep Med Rev. 2022;61:101583.

    Article  PubMed  Google Scholar 

  90. Riemann D, Spiegelhalder K, Feige B, Voderholzer U, Berger M, Perlis M, Nissen C. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14:19–31.

    Article  PubMed  Google Scholar 

  91. Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 2015;14:547–58.

    Article  PubMed  Google Scholar 

  92. Orff HJ. Neurobiology of insomnia as measured with FMRI. ProQuest Information & Learning. 2010.

  93. Drummond SPA, Walker M, Almklov E, Campos M, Anderson DE, Straus LD. Neural correlates of working memory performance in primary insomnia. Sleep. 2013;36:1307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li Y, Liu L, Wang E, Zhang H, Dou S, Tong L, Cheng J, Chen C, Shi D. Abnormal neural network of primary insomnia: evidence from spatial working memory task fMRI. Eur Neurol. 2016;75:48–57.

    Article  PubMed  Google Scholar 

  95. Perrier J, Bruijel J, Naveau M, Ramautar J, Delcroix N, Coppens J, Lakbila-Kamal O, Stoffers D, Bessot N, Van Someren EJW. Functional connectivity correlates of attentional networks in insomnia disorder: a pilot study. J Sleep Res. 2022;e13796.

  96. Bonnet MH, Arand DL. Hyperarousal and insomnia: state of the science. Sleep Med Rev. 2010;14:9–15.

    Article  PubMed  Google Scholar 

  97. Baglioni C, Nanovska S, Regen W, Spiegelhalder K, Feige B, Nissen C, Reynolds CF, Riemann D. Sleep and mental disorders: a meta-analysis of polysomnographic research. Psychol Bull. 2016;142:969–90.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Riemann D, Krone LB, Wulff K, Nissen C. Sleep, insomnia, and depression. Neuropsychopharmacology. 2020;45:74–89.

    Article  PubMed  Google Scholar 

  99. Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, Peterson MJ, Tononi G. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci. 2007;104:8496–501.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Eggert T, Dorn H, Sauter C, Nitsche MA, Bajbouj M, Danker-Hopfe H. No effects of slow oscillatory transcranial Direct Current Stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimulat. 2013;6:938–45.

    Article  Google Scholar 

  101. Paßmann S, Külzow N, Ladenbauer J, Antonenko D, Grittner U, Tamm S, Flöel A. Boosting slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve memory consolidation in healthy older adults. Brain Stimulat. 2016;9:730–9.

    Article  Google Scholar 

  102. Bueno-Lopez A, Eggert T, Dorn H, Danker-Hopfe H. Slow oscillatory transcranial direct current stimulation (so-tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects. Brain Stimulat. 2019;12:948–58.

    Article  CAS  Google Scholar 

  103. Saebipour MR, Joghataei MT, Yoonessi A, Sadeghniiat-Haghighi K, Khalighinejad N, Khademi S. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study. J Sleep Res. 2015;24:518–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.A. and G.A. equally contributed to the composition of this work by writing the main manuscript text and preparing the figure and the table. L.P. conceived the idea for the review and supervised the writing of the manuscript. A.G. provided guidance in writing, conceptualization, planning and supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Giulia Aquino.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

No animal or human subjects by the authors were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aquino, G., Alfì, G., Riemann, D. et al. Sleep is Essential for Mental Health: Potential Role of Slow Oscillations. Curr Sleep Medicine Rep 10, 13–22 (2024). https://doi.org/10.1007/s40675-024-00277-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-024-00277-w

Keywords

Navigation