Skip to main content

Advertisement

Log in

Serum biomarkers in uncontrolled no heart-beating donors may identify kidneys that will never work after transplantation

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background/aims

Kidneys from uncontrolled non heart-beating donors achieve a good level of renal function after transplantation. However, a number of them will never function in the recipient. Our aim was to determine if serum biomarkers associated with platelet activity, inflammation and the nitric oxide system in uncontrolled non heart-beating donors may help to predict no renal function recovery after renal transplantation.

Methods

Serum levels of interleukin (IL)-6, IL-10, intercellular cell adhesion molecule-1 (ICAM-1), cyclic guanosine monophosphate (cGMP), nitrite + nitrate and platelet factor-4 (PF4) were measured using enzyme-linked immunosorbent assay (ELISA) kits in 88 uncontrolled non heart-beating donors divided according to the renal functionality achieved in the recipients into functional (n = 76) and non functional (n = 12).

Results

Kidneys from donors with higher IL-6 levels (>900 pg/ml) were functional after transplantation. Serum cGMP levels below 372.3 fmol/l were also associated with kidneys that recovered the renal function. However, serum levels of PF4 showed the best correlation with recovery of renal functional in the recipients since they were significantly lower in the donors whose kidneys functioned after transplantation.

Conclusions

Serum PF4 levels in uncontrolled non heart-beating donors may be a good predictor for kidneys that never will reach functional recovery. Some serum cGMP, IL-6 and IL-10 levels may simply help identify kidneys that will function after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerstenkorn C (2003) Non-heart-beating donors: renewed source of organs for renal transplantation during the twenty-first century. World J Surg 27:489–493

    Article  PubMed  Google Scholar 

  2. Kootstra G, Daemen JH, Oomen AP (1995) Categories of non-heart-beating donors. Transplant Proc 27:2893–2894

    PubMed  CAS  Google Scholar 

  3. Abt PL, Desai NM, Crawford MD, Forman LM, Markmann JW, Olthoff KM, Markmann JF (2004) Survival following liver transplantation from non-heart-beating donors. Ann Surg 239:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharif A, Borrows R (2013) Delayed graft function after kidney transplantation: the clinical perspective. Am J Kidney Dis 62:150–158

    Article  PubMed  Google Scholar 

  5. Schlumpf R, Candinas D, Weder W, Röthlin M, Zollinger A, Bleisch J, Retsch M, Largiadèr F (1993) Acute vascular rejection with hemolytic uremic syndrome in kidneys from non-heart-beating donors: associated with secondary grafts and early cyclosporine treatment? Transplant Proc 25:1518–1521

    PubMed  CAS  Google Scholar 

  6. Zarifian A, Meleg-Smith S, O’donovan R, Tesi RJ, Batuman V (1999) Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int 55:2457–2466

    Article  PubMed  CAS  Google Scholar 

  7. Noris M, Remuzzi G (2010) Thrombotic microangiopathy after kidney transplantation. Am J Transplant 10:1517–1523

    Article  PubMed  CAS  Google Scholar 

  8. Sánchez-Fructuoso AI, Prats D, Torrente J, Pérez-Contín MJ, Fernández C, Alvarez J, Barrientos A (2000) Renal transplantation from non-heart beating donors: a promising alternative to enlarge the donor pool. J Am Soc Nephrol 11:350–358

    PubMed  Google Scholar 

  9. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016

    Article  PubMed  CAS  Google Scholar 

  10. Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, Dragun D, Haase M (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery–a prospective cohort study. Crit Care Med 37:553–560

    Article  PubMed  CAS  Google Scholar 

  11. Aidoudi S, Bikfalvi A (2010) Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis. Thromb Haemost 104:941–948

    Article  PubMed  CAS  Google Scholar 

  12. Yang J, Chen J, Yan J, Zhang L, Chen G, He L, Wang Y (2012) Effect of interleukin 6 deficiency on renal interstitial fibrosis. PLoS One 7:e52415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Shao J, Miyata T, Yamada K, Hanafusa N, Wada T, Gordon KL, Inagi R, Kurokawa K, Fujita T, Johnson RJ, Nangaku M (2001) Protective role of nitric oxide in a model of thrombotic microangiopathy in rats. J Am Soc Nephrol 12:2088–2097

    PubMed  CAS  Google Scholar 

  14. Sacristán D, López-Farré AJ, Zamorano-León JJ, Azcona L, Fernández-Ortiz A, Romero J, Farré J, Macaya C (2008) Effects of coronary prestenting platelet inhibition on coronary poststenting inflammation. J Cardiovasc Pharmacol 51:286–292

    Article  PubMed  Google Scholar 

  15. López-Farré AJ, Modrego J, Azcona L, Guerra R, Segura A, Rodríguez P, Zamorano-León JJ, Lahera V, Macaya C (2014) Nitric oxide from mononuclear cells may be involved in platelet responsiveness to aspirin. Eur J Clin Invest 44:463–469

    Article  PubMed  Google Scholar 

  16. García-Cardoso J, Vela R, Mahillo E, Mateos-Cáceres PJ, Modrego J, Macaya C, López-Farré AJ (2010) Increased cyclic guanosine monophosphate production and endothelial nitric oxide synthase level in mononuclear cells from sildenafil citrate-treated patients with erectile dysfunction. Int J Impot Res 22:68–76

    Article  PubMed  Google Scholar 

  17. Lauzurica R, Pastor MC, Bayés B, Hernandez JM, Bonet J, Doladé M, Navarro M, Romero R (2008) Pretransplant inflammation: a risk factor for delayed graft function? J Nephrol 21:221–228

    PubMed  CAS  Google Scholar 

  18. Pecoits-Filho R, Lindholm B, Axelsson J, Stenvinkel P (2003) Update on interleukin-6 and its role in chronic renal failure. Nephrol Dial Transplant 18:1042–1045

    Article  PubMed  CAS  Google Scholar 

  19. Mikłaszewska M, Korohoda P, Zachwieja K, Mroczek T, Drożdż D, Sztefko K, Moczulska A, Pietrzyk JA (2013) Serum interleukin 6 levels as an early marker of acute kidney injury on children after cardiac surgery. Adv Clin Exp Med 22:377–386

    PubMed  Google Scholar 

  20. Jin Y, Liu R, Xie J, Xiong H, He JC, Chen N (2013) Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Lab Invest 93:801–811

    Article  PubMed  CAS  Google Scholar 

  21. Sancho A, Pastor MC, Bayés B, Sánchez A, Morales-Indiano C, Doladé M, Romero R, Lauzurica R (2010) Posttransplant inflammation associated with onset of chronic kidney disease. Transplant Proc 42:2896–2898

    Article  PubMed  CAS  Google Scholar 

  22. Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, Jørgensen T, Pedersen BK (2003) Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol 132:24–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Pazos P, Lima L, Casanueva FF, Diéguez C, García MC (2013) Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice. PLoS One 8:e72339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Naitoh Y, Fukata J, Tominaga T, Nakai Y, Tamai S, Mori K, Imura H (1988) Interleukin-6 stimulates the secretion of adrenocorticotropic hormone in conscious, freely-moving rats. Biochem Biophys Res Commun 155:1459–1463

    Article  PubMed  CAS  Google Scholar 

  25. Sankaran D, Asderakis A, Ashraf S, Roberts IS, Short CD, Dyer PA, Sinnott PJ, Hutchinson IV (1999) Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int 56:281–288

    Article  PubMed  CAS  Google Scholar 

  26. Casavilla A, Ramirez C, Shapiro R, Nghiem D, Miracle K, Fung JJ, Starzl TE (1995) Experience with liver and kidney allografts from non-heart-beating donors. Transplant Proc 27:2898

    PubMed  CAS  Google Scholar 

  27. Freedman JE, Loscalzo J (2003) Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost 1:1183–1188

    Article  PubMed  CAS  Google Scholar 

  28. Sethi S, Iida S, Sigmund CD, Heistad DD (2006) Renal thrombotic microangiopathy in a genetic model of hypertension in mice. Exp Biol Med (Maywood) 231:196–203

    CAS  Google Scholar 

  29. Jakob G, Mair J, Vorderwinkler KP, Judmaier G, König P, Zwierzina H, Pichler M, Puschendorf B (1994) Clinical significance of urinary cyclic guanosine monophosphate in diagnosis of heart failure. Clin Chem 40:96–100

    PubMed  CAS  Google Scholar 

  30. Mair J, Puschendorf B (1998) Is measurement of cyclic guanosine monophosphate in plasma or urine suitable for assessing in vivo nitric oxide production? Circulation 31(97):1209–1210

    Article  Google Scholar 

  31. Kielstein JT, Impraim B, Simmel S, Bode-Böger SM, Tsikas D, Frölich JC, Hoeper MM, Haller H, Fliser D (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 20:172–177

    Article  Google Scholar 

  32. Lew RA, Baertschi AJ (1989) Mechanisms of hypoxia-induced atrial natriuretic factor release from rat hearts. Am J Physiol 257:H147–H156

    PubMed  CAS  Google Scholar 

  33. Anker SD, Coats AJ (1997) Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Circulation 95:538–539

    PubMed  CAS  Google Scholar 

  34. Dussaule JC, Ardaillou R (1990) Current indications of plasma atrial natriuretic peptide measurements in human diseases. Horm Res 34:133–137

    Article  PubMed  CAS  Google Scholar 

  35. Hamet P, Pang SC, Tremblay J (1989) natriuretic factor-induced egression of cyclic guanosine 3′:5′-monophosphate in cultured vascular smooth muscle and endothelial cells. J Biol Chem 264:12364–12369

    PubMed  CAS  Google Scholar 

  36. Mercapide J, Santiago E, Alberdi E, Martinez-Irujo JJ (1999) Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells. Biochem Pharmacol 58:1675–1683

    Article  PubMed  CAS  Google Scholar 

  37. Dell’anna AM, Bini Vinotti J, Beumier M, Orbegozo-Cortes D, Donatello K, Scolletta S, Vincent JL, Taccone FS (2014) C-reactive protein levels after cardiac arrest in patients treated with therapeutic hypothermia. Resucitation 85:932–938

    Article  Google Scholar 

  38. Levine SP, Lindenfeld J, Ellis JB, Raymond NM, Krentz LS (1981) Increased plasma concentrations of platelet factor 4 in coronary artery disease: a measure of in vivo platelet activation and secretion. Circulation 64:626–632

    Article  PubMed  CAS  Google Scholar 

  39. Sachais BS, Higazi AA, Cines DB, Poncz M, Kowalska MA (2004) Interactions of platelet factor 4 with the vessel wall. Semin Thromb Hemost 30:351–358

    Article  PubMed  CAS  Google Scholar 

  40. Pitsilos S, Hunt J, Mohler ER, Prabhakar AM, Poncz M, Dawicki J, Khalapyan TZ, Wolfe ML, Fairman R, Mitchell M, Carpenter J, Golden MA, Cines DB, Sachais BS (2003) Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost 90:1112–1120

    PubMed  CAS  Google Scholar 

  41. Zamani P, Schwartz GG, Olsson AG, Rifai N, Bao W, Libby P, Ganz P, Kinlay S, Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators (2013) Inflammatory biomarkers, death, and recurrent nonfatal coronary events after an acute coronary syndrome in the MIRACL study. J Am Heart Assoc 2:e003103

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tzoulaki I, Murray GD, Lee AJ, Rulmley A, Lowe GD, Fowkes FG (2005) C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation 112:976–983

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg ID, Stemerman MB, Handin RI (1980) Vascular permeation of platelet factor 4 after endothelial injury. Science 209:611–612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondo de Investigaciones de la Seguridad Social [Redes Temáticas de Investigación Cooperativa (RETICs) RD12/0042/0040], Fondo Europeo de Desarrollo Regional (Fondos FEDER). Javier Modrego is staff member of RIC, José J. Zamorano León is staff member of Comunidad de Madrid (S2010/BMD-2374). We thank Begoña Larrea for secretarial assistance.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The study was approved by the local Ethical committee in accordance with the ethical guidelines of the 2000 Declaration of Helsinki and 2008 Declaration of Istanbul.

Informed consent

Written consent was obtained for all 88 renal UCNHBD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Barrientos.

Additional information

A. J. López-Farré, J. M. Santos-Sancho and J. Modrego have contributed by equal in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Farré, A.J., Santos-Sancho, J.M., Modrego, J. et al. Serum biomarkers in uncontrolled no heart-beating donors may identify kidneys that will never work after transplantation. J Nephrol 29, 119–127 (2016). https://doi.org/10.1007/s40620-015-0203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-015-0203-3

Keywords

Navigation