Skip to main content

Advertisement

Log in

mTOR inhibitors and renal allograft: Yin and Yang

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Mammalian target of rapamycin inhibitors (mTOR-I), everolimus and sirolimus, are immunosuppressive drugs extensively used in renal transplantation. Their main mechanism of action is the inhibition of cell signaling through the PI3 K/Akt/mTOR pathway. This interesting mechanism of action confers to these medications both great immunosuppressive potential and important anti-neoplastic properties. Although the clinical utility of this drug category, as with other antineoplastic/immunosuppressants, is clear, the use of mTOR-I commonly results in the development of several complications. In particular, these agents may determine severe renal toxicity that, as recent studies report, seems clearly correlated to dose and duration of drug use. The mTOR-I-induced renal allograft spectrum of toxicity includes the enhanced incidence of delayed graft function, nephrotoxicity in particular when co-administered with calcineurin inhibitors (CNI) and onset of proteinuria. The latter effect appears highly frequent in patients undergoing mTOR-I treatment and significantly associated with a rapid graft lost. The damage leading to this complication interests both the glomerular and tubular area. mTOR-I cause an inhibition of proliferation in podocytes and the epithelial-to-mesenchymal transition in tubular cells. Interestingly, all these side effects are mostly reversible and dose related. Therefore, it is unquestionable that these particular drugs should be administered at the lowest dose able to maintain relatively low trough levels, in order to maximize their important and specific therapeutic effects while minimizing or avoiding drug toxicities. Utilization of low dosages of mTOR-I should be encouraged not only in CNI-combined schemas, but also when administered alone in a CNI-free immunosuppressive protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cecka JM The UNOS renal transplant registry. Clin Transpl 2005:1–16

  2. Starzl TE, Klintmalm GB, Weil R III et al (1981) Cyclosporin A and steroid therapy in sixty-six cadaver kidney recipients. Surg Gynecol Obstet 153:486–494

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Wolfe RA, Roys EC, Merion RM (2010) Trends in organ donation and transplantation in the United States, 1999-2008. Am J Transplant 10(4 Pt 2):961–972

    PubMed  CAS  Google Scholar 

  4. Geissler EK, Schlitt HJ, Thomas G (2008) mTOR, cancer, and transplantation. Am J Transplant 8:2212–2218

    PubMed  CAS  Google Scholar 

  5. Chapman JR, Valantine H, Albanell J et al (2007) Proliferation signal inhibitors in transplantation: questions at the cutting edge of everolimus therapy. Transplant Proc 39:2937–2950

    PubMed  CAS  Google Scholar 

  6. Sehgal SN (1998) Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunnuosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31:335–340

    PubMed  CAS  Google Scholar 

  7. Kahan BD, For the Rapamune US Study Group (2000) Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomized multicentre study. Lancet 356(9225):194–202

    PubMed  CAS  Google Scholar 

  8. MacDonald AS, For the Rapamune Global Study Group (2001) A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 71(2):271–280

    PubMed  CAS  Google Scholar 

  9. Groth CG, Backman L, Morales JM et al (1999) Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation 67(7):1036–1042

    PubMed  CAS  Google Scholar 

  10. Kreis H, Cisterne JM, Land W et al (2000) Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. The Sirolimus European Renal Transplant Study Group. Transplantation 69(7):1252–1260

    PubMed  CAS  Google Scholar 

  11. Flechner SM, Glyda M, Cockfield S et al (2011) The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am J Transplant 11(8):1633–1644

    PubMed  CAS  Google Scholar 

  12. Lorber MI, Mulgaonkar S, Butt KM (2005) Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation 80(2):244–252

    PubMed  CAS  Google Scholar 

  13. Ekberg H, Tedesco-Silva H, Demirbas A et al (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 375:2562–2575

    Google Scholar 

  14. Vitko S, Margreiter R, Weimar W et al (2005) Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients. Am J Transplant 5(10):2521–2530

    PubMed  CAS  Google Scholar 

  15. Ciancio G, Burke GW, Gaynor JJ et al (2004) A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. Transplantation 77:252–258

    PubMed  CAS  Google Scholar 

  16. Larson TS, Dean PG, Stegall MD et al (2006) Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. Am J Transplant 6:514–522

    PubMed  CAS  Google Scholar 

  17. Mendez R, Gonwa T, Yang HC, Weinstein S, Jensik S, Steinberg S, Prograf Study Group (2005) A prospective, randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 1 year. Transplantation 80(3):303–309

    PubMed  CAS  Google Scholar 

  18. Anil Kumar MS, Heifets M, Fyfe B, Saaed MI, Moritz MJ, Parikh MH, Kumar A (2005) Comparison of steroid avoidance in tacrolimus/mycophenolate mofetil and tacrolimus/sirolimus combination in kidney transplantation monitored by surveillance biopsy. Transplantation 80(6):807–814

    PubMed  Google Scholar 

  19. Gallon L, Perico N, Dimitrov BD, Winoto J, Remuzzi G, Leventhal J, Gaspari F, Kaufman D (2006) Long-term renal allograft function on a tacrolimus-based, pred-free maintenance immunosuppression comparing sirolimus vs. MMF. Am J Transplant 6(7):1617–1623

    PubMed  CAS  Google Scholar 

  20. Flechner SM, Goldfarb D, Modlin C, Feng J, Krishnamurthi V, Mastroianni B, Savas K, Cook DJ, Novick AC (2002) Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplantation 74:1070–1076

    PubMed  CAS  Google Scholar 

  21. Watson CJ, Firth J, Williams PF et al (2005) A randomized controlled trial of late conversion from CNI-based to sirolimus-based immunosuppression following renal transplantation. Am J Transplant 5:2496–2503

    PubMed  CAS  Google Scholar 

  22. Stallone G, Infante B, Schena A et al (2005) Rapamycin for treatment of chronic allograft nephropathy in renal transplant patients. J Am Soc Nephrol 16:3755–3762

    PubMed  CAS  Google Scholar 

  23. Schena FP, Pascoe MD, Alberu J et al (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87:233–242

    PubMed  CAS  Google Scholar 

  24. Lebranchu Y, Thierry A, Toupance O et al (2009) Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. Am J Transplant 9:1115–1123

    PubMed  CAS  Google Scholar 

  25. Patel SJ, Dawson KL, Knight RJ et al (2011) The role of mTOR inhibition in renal transplant immune suppression. Dial Transplant 40:23–29

    Google Scholar 

  26. Penn I (1998) Occurrence of cancers in immunosuppressed organ transplant recipients. Clin Transpl 147–158

  27. Kasiske BL, Snyder JJ, Gilbertson DT, Wang C (2004) Cancer after kidney transplantation in the United States. Am J Transplant 4(6):905–913

    PubMed  Google Scholar 

  28. Vasudev B, Hariharan S (2007) Cancer after renal transplantation. Curr Opin Nephrol Hypertens 16(6):523–528

    PubMed  Google Scholar 

  29. Buell JF, Gross TG, Woodle ES (2005) Malignancy after transplantation. Transplantation 80(2 Suppl):S254–S264

    PubMed  Google Scholar 

  30. Dantal J, Pohanka E (2007) Malignancies in renal transplantation: an unmet medical need. Nephrol Dial Transplant 22(Suppl 1):i4–i10

    PubMed  Google Scholar 

  31. Vajdic CM, MacDonald SP, McCredie MR et al (2006) Cancer incidence before and after kidney transplantation. JAMA 296(23):2823–2831

    PubMed  CAS  Google Scholar 

  32. Villeneuve PJ, Schaubel DE, Fenton SS, Shepherd FA, Jiang Y, Mao Y (2007) Cancer incidence among Canadian kidney transplant recipients. Am J Transplant 7(4):941–948

    PubMed  CAS  Google Scholar 

  33. Luan FL, Hojo M, Maluccio M, Yamaji K, Suthanthiran M (2002) Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy. Transplantation 73:1565–1572

    PubMed  CAS  Google Scholar 

  34. Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8(2):128–135

    PubMed  CAS  Google Scholar 

  35. Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD (2005) Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 80:883–889

    PubMed  CAS  Google Scholar 

  36. Mathew T, Kreis H, Friend P (2004) Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. Clin Transplant 18:446–449

    PubMed  Google Scholar 

  37. Campistol JM, Eris J, Oberbauer R et al (2006) Sirolimus therapy after early cyclosporine withdrawal reduces the risk of cancer in adult renal transplantation. J Am Soc Nephrol 17:581–589

    PubMed  CAS  Google Scholar 

  38. Campistol JM, Gutierrez-Dalmau A, Torregrosa JV (2004) Conversion to sirolimus: a successful treatment for posttransplantation Kaposi’s sarcoma. Transplantation 77:760–762

    PubMed  Google Scholar 

  39. Lebbe C, Euvrard S, Barrou B et al (2006) Sirolimus conversion for patients with posttransplant Kaposi’s sarcoma. Am J Transplant 6:2164–2168

    PubMed  CAS  Google Scholar 

  40. Zmonarski SC, Boratyńska M, Rabczyński J, Kazimierczak K, Klinger M (2005) Regression of Kaposi’s sarcoma in renal graft recipients after conversion to sirolimus treatment. Transplant Proc 37(2):964–966

    PubMed  CAS  Google Scholar 

  41. Stallone G, Schena A, Infante B et al (2005) Sirolimus for Kaposi’s sarcoma in renal transplant patients. N Engl J Med 352(13):1317–1323

    PubMed  CAS  Google Scholar 

  42. Zaltzman JS, Prasad R, Chun K, Jothy S (2005) Resolution of renal allograft associated post-transplant lymphoproliferative disorder with introduction of sirolimus. Nephrol Dial Transplant 20(8):1748–1751

    PubMed  Google Scholar 

  43. Mohsin N, Budrudden M, Kamble P et al (2007) Complete regression of cutaneous B cell lymphoma in a renal transplant patient after conversion from cyclosporine to sirolimus. Transplant Proc 39(4):1267–1271

    PubMed  CAS  Google Scholar 

  44. Cullis B, D’Souza R, McCullagh P et al (2006) Sirolimus—induced remission of posttransplantation lymphoproliferative disorder. Am J Kidney Dis 47(5):e67–e72

    PubMed  Google Scholar 

  45. Jiménez-Rivera C, Avitzur Y, Fecteau AH, Jones N, Grant D, Ng VL (2004) Sirolimus for pediatric liver transplant recipients with posttransplant lymphoproliferative disease and hepatoblastoma. Pediatr Transplant 8(3):243–248

    PubMed  Google Scholar 

  46. Garcia VD, Bonamigo Filho JL, Neuman J et al (2003) Rituximab in association with rapamycin for posttransplant lymphoproliferative disease treatment. Transpl Int 16(3):202–206

    PubMed  CAS  Google Scholar 

  47. Al-Akash SI, Al Makadma AS, Al Omari MG (2005) Rapid response to rituximab in a pediatric liver transplant recipient with posttransplant lymphoproliferative disease and maintenance with sirolimus monotherapy. Pediatr Transplant 9(2):249–253

    PubMed  Google Scholar 

  48. Morales JM (2002) Influence of the new immunosuppressive combinations on arterial hypertension after renal transplantation. Kidney Int Suppl 82:S81–S87

    PubMed  CAS  Google Scholar 

  49. Legendre C, Campistol JM, Squifflet JP et al (2003) Sirolimus European Renal Transplant Study Group: cardiovascular risk factors of sirolimus compared with cyclosporine: early experience from two randomized trials in renal transplantation. Transplant Proc 35(3 Suppl):151S–153S

    PubMed  CAS  Google Scholar 

  50. Paoletti E, Marsano L, Bellino D, Cassottana P, Cannella G (2012) Effect of everolimus on left ventricular hypertrophy of de novo kidney transplant recipients: a 1 year, randomized, controlled trial. Transplantation 93:503–508

    PubMed  CAS  Google Scholar 

  51. Joannidès R, Monteil C, de Ligny BH et al (2011) Immunosuppressant regimen based on sirolimus decreases aortic stiffness in renal transplant recipients in comparison to cyclosporine. Am J Transplant 11(11):2414–2422

    PubMed  Google Scholar 

  52. Brattstrom C, Wilczek H, Tyden G et al (1998) Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin). Transplantation 65:1272–1274

    PubMed  CAS  Google Scholar 

  53. Ekberg H, Bernasconi C, Nöldeke J et al (2010) Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the Symphony study. Nephrol Dial Transplant 25(6):2004–2010

    PubMed  CAS  Google Scholar 

  54. Fortun J, Martin-Davila P, Pascual J et al (2010) Immunosuppressive therapy and infection after kidney transplantation. Transpl Infect Dis 12(5):397–405

    PubMed  CAS  Google Scholar 

  55. Snyder JJ, Israni AK, Peng Y et al (2009) Rates of first infection following kidney transplant in the United States. Kidney Int 75(3):317–326

    PubMed  Google Scholar 

  56. Nashan B, Gaston R, Emery V et al (2012) Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation 93(11):1075–1085

    PubMed  CAS  Google Scholar 

  57. Araki K, Turner AP, Shaffer VO et al (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Benavides CA, Pollard VB, Mauiyyedi S, Podder H, Knight R, Kahan BD (2007) BK virus-associated nephropathy in sirolimus-treated renal transplant patients: incidence, course, and clinical outcomes. Transplantation 84:83–88

    PubMed  CAS  Google Scholar 

  59. Zaza G, Tomei P, Ria P, Granata S, Boschiero L, Lupo A (2013) Systemic and nonrenal adverse effects occurring in renal transplant patients treated with mTOR inhibitors. Clin Dev Immunol 2013:403280

    PubMed  PubMed Central  Google Scholar 

  60. Sánchez-Fructuoso AI, Ruiz JC, Pérez-Flores I et al (2010) Comparative analysis of adverse events requiring suspension of mTOR inhibitors: everolimus versus sirolimus. Transplant Proc 42(8):3050–3052

    PubMed  Google Scholar 

  61. Diekmann F, Andres A, Oppenheimer F (2012) mTOR inhibitor-associated proteinuria in kidney transplant recipients. Transplant Rev (Orlando) 26(1):27–29

    Google Scholar 

  62. Diekmann F, Budde K, Oppenheimer F, Fritsche L, Neumayer HH, Campistol JM (2004) Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant 4:1869–1875

    PubMed  CAS  Google Scholar 

  63. Letavernier E, Pe’raldi MN, Pariente A, Morelon E, Legendre C (2005) Proteinuria following a switch from calcineurin inhibitors to sirolimus. Transplantation 80(9):1198–1203

    PubMed  CAS  Google Scholar 

  64. Morelon E, Kreis H (2003) Sirolimus therapy without calcineurin inhibitors: Necker Hospital 8-year experience. Transplant Proc 35(3 Suppl):52S–57S

    PubMed  CAS  Google Scholar 

  65. Faul C, Donnelly M, Merscher-Gomez S et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14(9):931–938

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Saurina A, Campistol JM, Piera C et al (2006) Conversion from calcineurin inhibitors to sirolimus in chronic allograft dysfunction: changes in glomerular haemodynamics and proteinuria. Nephrol Dial Transplant 21(2):488–493

    PubMed  CAS  Google Scholar 

  67. Coombes JD, Mreich E, Liddle C, Rangan GK (2005) Rapamycin worsens renal function and intratubular cast formation in protein overload nephropathy. Kidney Int 68(6):2599–2607

    PubMed  CAS  Google Scholar 

  68. Inoki K, Mori H, Wang J et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121(6):2181–2196

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Godel M, Hartleben B, Herbach N (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121(6):2197–2209

    PubMed  PubMed Central  Google Scholar 

  70. Gonwa T, Johnson C, Ahsan N (2003) Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. Transplantation 75(12):2048–2053

    PubMed  CAS  Google Scholar 

  71. Napoli KL, Wang ME, Stepkowski SM, Kahan BD (1998) Relative tissue distributions of cyclosporine and sirolimus after concomitant peroral administration to the rat: evidence for pharmacokinetic interactions. Ther Drug Monit 20(2):123–133

    PubMed  CAS  Google Scholar 

  72. Podder H, Stepkowski SM, Napoli KL (2001) Pharmacokinetic interactions augment toxicities of sirolimus/cyclosporine combinations. J Am Soc Nephrol 12(5):1059–1071

    PubMed  CAS  Google Scholar 

  73. Anglicheau D, Pallet N, Rabant M (2006) Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 70(6):1019–1025

    PubMed  CAS  Google Scholar 

  74. Lo A, Egidi MF, Gaber LW et al (2004) Observations regarding the use of sirolimus and tacrolimus in high-risk cadaveric renal transplantation. Clin Transplant 18:53–61

    PubMed  Google Scholar 

  75. Gaber AO, Kahan BD, Van Buren C, Schulman SL, Scarola J, Neylan JF (2008) Comparison of sirolimus plus tacrolimus versus sirolimus plus cyclosporine in high-risk renal allograft recipients: results from an open-label, randomized trial. Transplantation 86:1187–1195

    PubMed  CAS  Google Scholar 

  76. Hong JC, Kahan BD (2001) A calcineurin antagonist-free induction strategy for immunosuppression in cadaveric kidney transplant recipients at risk for delayed graft function. Transplantation 71(9):1320–1328

    PubMed  CAS  Google Scholar 

  77. McTaggart RA, Gottlieb D, Brooks J et al (2003) Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am J Transplant 3(4):416–423

    PubMed  CAS  Google Scholar 

  78. Lieberthal W, Fuhro R, Andry CC et al (2001) Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 281(4):F693–F706

    PubMed  CAS  Google Scholar 

  79. Dantal J, Berthoux F, Moal MC et al (2010) Efficacy and safety of de novo or early everolimus with low cyclosporine in deceased-donor kidney transplant recipients at specified risk of delayed graft function: 12-month results of a randomized, multicenter trial. Transpl Int 23(11):1084–1093

    PubMed  CAS  Google Scholar 

  80. Tryggvason K, Patrakka J, Wartiovaara J (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354(13):1387–1401

    PubMed  CAS  Google Scholar 

  81. Kwoh C, Shannon MB, Miner JH, Shaw A (2006) Pathogenesis of nonimmune glomerulopathies. Annu Rev Pathol 1:349–374

    PubMed  CAS  Google Scholar 

  82. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307

    PubMed  CAS  Google Scholar 

  83. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13(12):3005–3015

    PubMed  Google Scholar 

  84. Kerjaschki D (2001) Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 108(11):1583–1587

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Benzing T (2004) Signaling at the slit diaphragm. J Am Soc Nephrol 15(6):1382–1391

    PubMed  Google Scholar 

  86. Vollenbröker B, George B, Wolfgart M, Saleem MA, Pavenstädt H, Weide T (2009) mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol 296(2):F418–F426

    PubMed  Google Scholar 

  87. Müller-Krebs S, Weber L, Tsobaneli J et al (2013) Cellular effects of everolimus and sirolimus on podocytes. PLoS One 8(11):e80340

    PubMed  PubMed Central  Google Scholar 

  88. Stallone G, Infante B, Pontrelli P et al (2011) Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins. Transplantation 91(9):997–1004

    PubMed  CAS  Google Scholar 

  89. Baas MC, Kers J, Florquin S et al (2013) Cyclosporine versus everolimus: effects on the glomerulus. Clin Transplant 27:535–540

    PubMed  CAS  Google Scholar 

  90. Smith KD, Wrenshall LE, Nicosia RF et al (2003) Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J Am Soc Nephrol 14:1037–1045

    PubMed  CAS  Google Scholar 

  91. Fervenza FC, Fitzpatrick PM, Mertz J, For the Mayo Nephrology Collaborative Group et al (2004) Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies. Nephrol Dial Transplant 19:1288–1292

    PubMed  CAS  Google Scholar 

  92. Marx SO, Jayaraman T, Go LO, Marks AR (1995) Rapamycin–FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 76:412–417

    PubMed  CAS  Google Scholar 

  93. Masola V, Zaza G, Granata S, Gambaro G, Onisto M, Lupo A (2013) Everolimus-induced epithelial to mesenchymal transition in immortalized human renal proximal tubular epithelial cells: key role of heparanase. J Transl Med 11(1):292

    PubMed  Google Scholar 

  94. Kurdián M, Herrero-Fresneda I, Lloberas N et al (2012) Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model. PLoS One 7(3):e32516

    PubMed  PubMed Central  Google Scholar 

  95. Geissler EK, Schlitt HJ (2011) mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int 79(5):502–511

    Google Scholar 

  96. Pontrelli P, Rossini M, Infante B et al (2008) Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation 85(1):125–134

    PubMed  CAS  Google Scholar 

  97. Breuleux M, Klopfenstein M, Stephan C et al (2009) Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3 K/mTOR inhibition. Mol Cancer Ther 8(4):742–753

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26(13):1932–1940

    PubMed  CAS  Google Scholar 

  99. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502

    PubMed  CAS  Google Scholar 

  100. Slomovitz BM, Coleman RL (2012) The PI3 K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res 18(21):5856–5864

    PubMed  CAS  Google Scholar 

  101. Gilles C, Polette M, Mestdagt M et al (2003) Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63(10):2658–2664

    PubMed  CAS  Google Scholar 

  102. Masola V, Gambaro G, Tibaldi E, Onisto M, Abaterusso C, Lupo A (2011) Regulation of heparanase by albumin and advanced glycation end products in proximal tubular cells. Biochim Biophys Acta 1813(8):1475–1482

    PubMed  CAS  Google Scholar 

  103. Masola V, Onisto M, Zaza G, Lupo A, Gambaro G (2012) A new mechanism of action of sulodexide in diabetic nephropathy: inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition. J Transl Med 10:213

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Masola V, Maran C, Tassone E, Zin A, Rosolen A, Onisto M (2009) Heparanase activity in alveolar and embryonal rhabdomyosarcoma: implications for tumor invasion. BMC Cancer 9:304

    PubMed  PubMed Central  Google Scholar 

  105. Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108(3):341–347

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Nasser NJ (2008) Heparanase involvement in physiology and disease. Cell Mol Life Sci 65:1706–1715

    PubMed  CAS  Google Scholar 

  107. Vreys V, David G (2007) Mammalian heparanase: what is the message? J Cell Mol Med 11:427–452

    PubMed  CAS  Google Scholar 

  108. Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 58:45–56

    CAS  Google Scholar 

  109. Xu X, Wan X, Geng J, Li F, Yang T, Dai H (2013) Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase. Exp Biol Med (Maywood) 238(9):1082–1094

    Google Scholar 

  110. Nakagawa S, Masuda S, Nishihara K, Inui K (2010) mTOR inhibitor everolimus ameliorates progressive tubular dysfunction in chronic renal failure rats. Biochem Pharmacol 79(1):67–76

    PubMed  CAS  Google Scholar 

  111. Lui SL, Chan KW, Tsang R, Yung S, Lai KN, Chan TM (2006) Effect of rapamycin on renal ischemia-reperfusion injury in mice. Transpl Int 19(10):834–839

    PubMed  CAS  Google Scholar 

  112. Cicora F, Lausada N, Vasquez DN et al (2010) Sirolimus in kidney transplant donors and clinical and histologic improvement in recipients: rat model. Transplant Proc 42(1):365–370

    PubMed  CAS  Google Scholar 

  113. Fuller TF, Freise CE, Serkova N, Niemann CU, Olson JL, Feng S (2003) Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury. Transplantation 76(11):1594–1599

    PubMed  CAS  Google Scholar 

  114. Hebert LA, Agarwal G, Sedmak DD, Mahan JD, Becker W, Nagaraja HN (2000) Proximal tubular epithelial hyperplasia in patients with chronic glomerular proteinuria. Kidney Int 57(5):1962–1967

    PubMed  CAS  Google Scholar 

  115. Morelon E, Stern M, Israel-Biet D, Kreis H et al (2001) Characteristics of sirolimus associated interstitial pneumonitis in renal transplant patient. Transplantation 72:787–790

    PubMed  CAS  Google Scholar 

  116. Errasti P, Izquierdo D, Martín P et al (2010) Pneumonitis associated with mammalian target of rapamycin inhibitors in renal transplant recipients: a single-center experience. Transplant Proc 42(8):3053–3054

    PubMed  CAS  Google Scholar 

  117. Rodríguez-Moreno A, Ridao N, García-Ledesma P et al (2009) Sirolimus and everolimus induced pneumonitis in adult renal allograft recipients: experience in a center. Transplant Proc 41(6):2163–2165

    PubMed  Google Scholar 

  118. Alexandru S, Ortiz A, Baldovi S et al (2008) Severe everolimus-associated pneumonitis in a renal transplant recipient. Nephrol Dial Transplant 23(10):3353–3355

    PubMed  Google Scholar 

  119. Champion L, Stern M, Israël-Biet D et al (2006) Brief communication: sirolimus-associated pneumonitis: 24 cases in renal transplant recipients. Ann Intern Med 144(7):505–509

    PubMed  Google Scholar 

  120. Pham PT, Pham PC, Danovitch GM et al (2004) Sirolimus-associated pulmonary toxicity. Transplantation 77(8):1215–1220

    PubMed  CAS  Google Scholar 

  121. Vandewiele B, Vandecasteele SJ, Vanwalleghem L, De Vriese AS (2010) Diffuse alveolar hemorrhage induced by everolimus. Chest 137(2):456–459

    PubMed  Google Scholar 

  122. Vlahakis NE, Rickman OB, Morgenthaler T (2004) Sirolimus-associated diffuse alveolar hemorrhage. Mayo Clin Proc 79(4):541–545

    PubMed  Google Scholar 

  123. Molas-Ferrer G, Soy-Muner D, Anglada-Martínez H et al (2013) Interstitial pneumonitis as an adverse reaction to mTOR inhibitors. Nefrologia 33(3):297–300

    PubMed  Google Scholar 

  124. Kirby S, Satoskar A, Brodsky S et al (2012) Histological spectrum of pulmonary manifestations in kidney transplant recipients on sirolimus inclusive immunosuppressive regimens. Diagn Pathol 7:25

    PubMed  PubMed Central  Google Scholar 

  125. Augustine JJ, Knauss TC, Schulak JA et al (2004) Comparative effects of sirolimus and mycophenolate mofetil on erythropoiesis in kidney transplant patients. Am J Transplant 4(12):2001–2006

    PubMed  CAS  Google Scholar 

  126. Sofroniadou S, Goldsmith D (2011) Mammalian target of rapamycin (mTOR) inhibitors: potential uses and a review of haematological adverse effects. Drug Saf 34(2):97–115

    PubMed  CAS  Google Scholar 

  127. Kahan BD, Podbielski J, Napoli KL et al (1998) Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 66:1040–1046

    PubMed  CAS  Google Scholar 

  128. Thaunat O, Beaumont C, Chatenoud L et al (2005) Anemia after late introduction of sirolimus may correlate with biochemical evidence of a chronic inflammatory state. Transplantation 80:1212–1219

    PubMed  CAS  Google Scholar 

  129. Maiorano A, Stallone G, Schena A et al (2006) Sirolimus interferes with iron homeostasis in renal transplant recipients. Transplantation 82:908–912

    PubMed  CAS  Google Scholar 

  130. Sánchez Fructuoso A, Calvo N, Moreno MA et al (2007) Study of anemia after late introduction of everolimus in the immunosuppressive treatment of renal transplant patients. Transplant Proc 39(7):2242–2244

    PubMed  Google Scholar 

  131. Diekmann F, Rovira J, Diaz-Ricart M et al (2012) mTOR inhibition and erythropoiesis: microcytosis or anaemia? Nephrol Dial Transplant 27(2):537–541

    PubMed  CAS  Google Scholar 

  132. Murgia MG, Jordan S, Kahan BD (1996) The side effect profile of sirolimus: a phase I study in quiescent cyclosporine-prednisone-treated renal transplant patients. Kidney Int 49:209–216

    PubMed  CAS  Google Scholar 

  133. Hong JC, Kahan BD (2007) Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: risk factors, incidence, progression, and management. Transplantation 69(10):2085–2090

    Google Scholar 

  134. Kovarik JM, Kaplan B, Tedesco Silva H et al (2002) Exposure-response relationships for everolimus in de novo kidney transplantation: defining a therapeutic range. Transplantation 73(6):920–925

    PubMed  CAS  Google Scholar 

  135. Babinska A, Markell MS, Salifu MO et al (1998) Enhancement of human platelet aggregation and secretion induced by rapamycin. Nephrol Dial Transplant 13:3153–3159

    PubMed  CAS  Google Scholar 

  136. Paul SR, Bennett F, Calvetti JA et al (1990) Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 87(19):7512–7516

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Quesniaux VF, Wehrli S, Steiner C et al (1994) The immuno-suppressant rapamycin blocks in vitro responses to hematopoietic cytokines and inhibits recovering but not steady-state hematopoiesis in vivo. Blood 84:1543–1552

    PubMed  CAS  Google Scholar 

  138. Kiberd BA (2002) Cardiovascular risk reduction in renal transplantation. Strategies for success. Minerva Urol Nefrol 54(2):51–63

    PubMed  CAS  Google Scholar 

  139. Morrisett JD, Abdel-Fattah G, Hoogeveen et al (2002) Effects of Sirolimus on plasma lipid, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 43:1170–1180

    PubMed  CAS  Google Scholar 

  140. Liu Q-Y, Nambi P (2004) Sirolimus upregulates aP2 expression in human monocytes and macrophages. Transplant Proc 36:3229–3231

    PubMed  CAS  Google Scholar 

  141. Makowski L, Boord JB, Maeda K et al (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7(6):699–705

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Kasiske BL, de Mattos A, Flechner SM et al (2008) Mammalian target of rapamycin inhibitor dyslipidemia in kidney transplant recipients. Am J Transplant 8(7):1384–1392

    PubMed  CAS  Google Scholar 

  143. Romagnoli J, Citterio F, Nanni G et al (2006) Incidence of posttransplant diabetes mellitus in kidney transplant recipients immunosuppressed with sirolimus in combination with cyclosporine. Transplant Proc 38:1034–1036

    PubMed  CAS  Google Scholar 

  144. Teutonico A, Schena PF, Di Paolo S (2005) Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol 16:3128–3135

    PubMed  CAS  Google Scholar 

  145. Sulanc E, Lane JT, Puumala SE et al (2005) New-onset diabetes after kidney transplantation: an application of 2003 International Guidelines. Transplantation 80:945–952

    PubMed  Google Scholar 

  146. Syed NA, Khandelwal RL (2000) Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells. Mol Cell Biochem 211:123–136

    PubMed  CAS  Google Scholar 

  147. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    PubMed  CAS  Google Scholar 

  148. Mittelman SD, Bergman RN (2000) Inhibition of lipolysis causes suppression of endogenous glucose production independent of changes in insulin. Am J Physiol Endocrinol Metab 279:E630–E637

    PubMed  CAS  Google Scholar 

  149. Bussiere CT, Lakey JR, Shapiro AM, Korbutt GS (2006) The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia 49:2341–2349

    PubMed  CAS  Google Scholar 

  150. Valente J, Hricik D, Weigel K et al (2003) Comparison of sirolimus versus mycophenolate mofetil on surgical complications and wound healing in adult kidney transplantation. Am J Transplant 3(9):1128–1134

    PubMed  CAS  Google Scholar 

  151. Dean PG, Lund WJ, Larson TS et al (2004) Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. Transplantation 77(10):1555–1561

    PubMed  CAS  Google Scholar 

  152. Srivastava A, Muruganandham K, Vinodh PB et al (2010) Post-renal transplant surgical complications with newer immunosuppressive drugs: mycophenolate mofetil vs. m-TOR inhibitors. Int Urol Nephrol 42(2):279–284

    PubMed  CAS  Google Scholar 

  153. Nair R, Huang X, Shorthouse R et al (1997) Antiproliferative effect of rapamycin on growth factor-stimulated human adult lung fibroblasts in vitro may explain its superior efficacy for prevention and treatment of allograft obliterative airway disease in vivo. Transplant Proc 29(1–2):614–615

    PubMed  CAS  Google Scholar 

  154. Zaza G, Granata S, Sallustio F, Grandaliano G, Schena FP (2010) Pharmacogenomics: a new paradigm to personalize treatments in nephrology patients. Clin Exp Immunol 159(3):268–280

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to disclosure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Zaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaza, G., Granata, S., Tomei, P. et al. mTOR inhibitors and renal allograft: Yin and Yang. J Nephrol 27, 495–506 (2014). https://doi.org/10.1007/s40620-014-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0103-y

Keywords

Navigation