Skip to main content
Log in

Effects of pulsed electromagnetic fields on the expression of NFATc1 and CAII in mouse osteoclast-like cells

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims

Pulsed electromagnetic fields (PEMF) have proven to be an effective noninvasive method in the prevention and treatment of osteoporosis. This study evaluated the effects of PEMF on the expression of the NFATc1, CAII and RANK genes in mouse osteoclast-like cells.

Methods

Bone marrow from bilateral tibiae and femurs was cultured in differentiation medium in the presence of soluble macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). After 5 days, the osteoclast-like cells were confirmed by both tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assays. The osteoclast-like cells were divided into five groups and exposed to the following treatments for 3 days: M-CSF; M-CSF + RANKL; M-CSF + RANKL + osteoprotegerin (OPG), M-CSF + RANKL + premarin (E2); and M-CSF + RANKL + PEMF. The numbers of multinucleated, TRAP-positive osteoclast-like cells and resorption pits formed were determined. The expression of NFATc1, CAII and RANK mRNA was determined with real-time fluorescent quantitative polymerase chain reaction.

Results

PEMF substantially reduced the number of osteoclast-like cells in the culture with M-CSF + RANKL. The level of NFATc1, CAII, and RANK mRNA expression was decreased in the M-CSF + RANKL + PEMF group compared to the M-CSF + RANKL group (p = 0.007, p = 0.039, p = 0.001, respectively). The mRNA expression of NFATc1, CAII, and RANK was not higher in the M-CSF + RANKL + OPG group compared to the M-CSF + RANKL + PEMF group (p = 0.682, p = 0.200, p = 0.924, respectively). In addition, there was no difference in the expression of mRNA from NFATc1, CAII, and RANK between the M-CSF + RANKL + PEMF group and the M-CSF + RANKL + E2 group (p = 0.853, p = 0.509, p = 0.664, respectively).

Conclusions

These data suggest that PEMF might modulate the process of osteoclastogenesis and subsequent bone resorption, at least partially, through NFATc1, CAII and RANK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57. doi:10.1007/s00198-012-2074-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lewiecki EM (2010) Treatment of osteoporosis with denosumab. J Maturitas 66:182–186. doi:10.1016/j.maturitas.2010.02.008

    Article  CAS  Google Scholar 

  3. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. J Cell 93:165–176. doi:10.1016/S0092-8674(00)81569-X

    Article  CAS  Google Scholar 

  4. Hofbauer LC, khosla S, Dunstan CR et al (2000) The roles of osteoprotegerin:a novel secreted osteoprotegerin ligand in the regulation in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12. doi:10.1359/jbmr.2000.15.1.2

    Article  CAS  PubMed  Google Scholar 

  5. Vega D, Maalouf NM, Sakhaee K (2007) The role of receptor activator of nuclearfactor-κB (RANK)/RANK ligand/osteoprotegerin:clinical implications. J Clin Endocrinol Metabol 92:4514–4521. doi:10.1210/jc.2007-0646

    Article  CAS  Google Scholar 

  6. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. J Ann NY Acad Sci 1092:385–396. doi:10.1196/annals.1365.035

    Article  CAS  Google Scholar 

  7. Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. J Dev Cell 3:889–901. doi:10.1016/S1534-5807(02)00369-6

    Article  CAS  Google Scholar 

  8. Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83:170–179. doi:10.1007/s00109-004-0612-6

    Article  CAS  PubMed  Google Scholar 

  9. Asagiri M, Sato K, Usami T et al (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269. doi:10.1084/jem.20051150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zelzer E, Olsen BR (2003) The genetic basis for skeletal diseases. J Nature 23:343–348. doi:10.1038/nature01659

    Article  Google Scholar 

  11. Mostov K, Werb Z (1997) Journey across the osteoclast. J Sci 276:219–220. doi:10.1126/science.276.5310.219

    Article  CAS  Google Scholar 

  12. Teitelbaum SL (2000) Bone resorption by osteoclasts. J Sci 289:1504–1508. doi:10.1126/science.289.5484.1504

    Article  CAS  Google Scholar 

  13. SatterSyed A, Islam MS, Rabbani KS, Talukder MS (1999) Pulsed electromagnetic fields for the treatment of bone fractures. J Bangladesh Med Res Counc Bull 25:6–10

    CAS  Google Scholar 

  14. Nicolakis P, Kollmitzer J, Crevenna R et al (2002) Pulsed magnetic field therapy for osteoarthritis of the knee-a double-blind sham-controlled trial. J Wien Klin Wochenschr 114:678–684

    Google Scholar 

  15. Garland DE, Adkins RH, Matsuno NN, Stewart CA (1999) The Effect of pulsed electromagnetic fields on osteoporosis at the knee in Individuals with spinal cord injury. J Spinal Cord Med 22:239–245

    CAS  PubMed  Google Scholar 

  16. Jing D, Shen G, Huang J et al (2010) Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. J Bone 46:487–495. doi:10.1016/j.bone.2009.09.021

    Article  Google Scholar 

  17. Chen J, He H-C, Xia Q-J et al (2010) Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized Rat osteoclast-like cells. J Connective Tissue Res 51:1–7. doi:10.3109/03008200902855917

    Article  CAS  Google Scholar 

  18. Tabrah FL, Ross P, Hoffmeier M, Gilbert FJr (1998) Clinical report on long-term bone density after short-term EMF application. J Bioelectromagnetics 19: 75–78. doi: 10.1002/(SICI)1521-186X(1998)19:2<75::AID-BEM3>3.0.CO;2-0

  19. Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA (1990) Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 5:437–442. doi:10.1002/jbmr.5650050504

    Article  CAS  PubMed  Google Scholar 

  20. Pavlos NJ, Xu JK, Riedel D et al (2005) Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol J Cell Bio 125:5253–5269. doi:10.1128/MCB.25.12.5253-5269.2005

    Article  Google Scholar 

  21. Chen J, He JQ, Zhen SY, Huang L (2012) OPG inhibits gene expression of RANK and CAII in mouse osteoclast-like cells. J Rheumatol Int 32:3393–3398. doi:10.1007/s00296-011-2338-4

    Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. J Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  23. Bell NH (2003) RANK ligand and the regulation of skeletal remodeling. J Clin Invest 111:1120–1122. doi:10.1172/JCI18358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. J Arch Biochem Biophys 473:139–146. doi:10.1016/j.abb.2008.03.018

    Article  CAS  Google Scholar 

  25. Grimaud E, Soubigou L, Couillaud S et al (2003) Receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Path 163:2021–2031. doi:10.1016/S0002-9440(10)63560-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. J Bone 40:251–264. doi:10.1016/j.bone.2006.09.023

    Article  CAS  Google Scholar 

  27. Ishida N, Hayashi K, Hoshijima M et al (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–41156. doi:10.1074/jbc.M205063200

    Article  CAS  PubMed  Google Scholar 

  28. Takayanagi H (2007) The role of NFAT in osteoclast formation. J Annals NY Acad Sci 1116:227–237. doi:10.1196/annals.1402.071

    Article  CAS  Google Scholar 

  29. Kanis JA, Gluer CC (2001) An update on the diagnosis and assessment of osteoporosis with densitometry. J Osteoporos Int 11:192–202. doi:10.1007/s001980050281

    Article  Google Scholar 

  30. Markov MS (2007) Pulsed electromagnetic field therapy history, state of the art and future. Environmental 27:465–475. doi:10.1007/s10669-007-9128-2

    Google Scholar 

  31. Ibiwoye MO, Powell KA, Grabiner MD (2004) Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. J Orthop Res 22:1086–1093. doi:10.1016/j.orthres.2003.12.017

    Article  PubMed  Google Scholar 

  32. Sert C, Mustafa D, Düz MZ, Aksen F, Kaya A (2002) The preventive effect on bone loss of 50 Hz, 1 mT electromagnetic field in ovariectomized rats. J Bone Miner Metab 20:345–349. doi:10.1007/s007740200050

    Article  CAS  PubMed  Google Scholar 

  33. Chang K, Chang WH (2003) Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model:aprostagl and in E2-associated process. J Bioelectromagnet 24:189–198. doi:10.1002/bem.10078

    Article  CAS  Google Scholar 

  34. Huang L, Wang W, Xiao D, Yang L, Lei Z, He C (2008) Effect of pulsed electromagnetic fields of different treatment time on bone mineral density of femur in ovariectomized rats. Zhong Guo Xiu Fu Chong Jian Wai Ke Za Zhi 22:548–550

    Google Scholar 

  35. Yang YH, He CQ, Yang L, Wang W, Lei ZJ (2008) Effects of different intensity pulsed electromagnetic fields on serum estradiol of ovariectomized rats. Sichuan Da Xue Xue Bao Yi Xue Ban 39:256–258

    PubMed  Google Scholar 

  36. Yang L, Lei Z, He C (2006) Clinical observation of low frequency pulse electromagnetic field on treatment of osteoporosis. J Chin J Osteoporos 12:24–25. doi:10.3969/j.issn.1006-7108.2006.06.013

    Google Scholar 

  37. Luo QL, Li S-S, He C, He HC, Yang L, Deng L (2009) Pulse electromagnetic fields effects on serum E2 levels, chondrocyte apoptosis, and matrix metalloproteinase-13 expression in ovariectomized rats. J Rheumatol Int 29:927–935. doi:10.1007/s00296-008-0782-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81272168); the Innovation Subject of Medicine in Fujian Province (2012-CXB-32); and the Technological Project of Health Bureau, Xiamen, Fujian Province, China (3502Z20104031).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Additional information

J. He and Y. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Zhang, Y., Chen, J. et al. Effects of pulsed electromagnetic fields on the expression of NFATc1 and CAII in mouse osteoclast-like cells. Aging Clin Exp Res 27, 13–19 (2015). https://doi.org/10.1007/s40520-014-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-014-0239-6

Keywords

Navigation