Skip to main content
Log in

Influence of Backfill Soil Saturation on the Structural Response of Buried Pipes

  • Technical Paper
  • Published:
Transportation Infrastructure Geotechnology Aims and scope Submit manuscript

Abstract

The structural design of new buried pipes and the calculation of the remaining service life of in-service buried pipes are usually conducted assuming that the backfill soil is at the optimum moisture content using the unsaturated soil parameters published by Boscardin et al. (1990). These unsaturated soil parameters are also implemented in the CANDE software, which is a standard software developed for designing buried culverts/pipes. However, intense rainfall seasons, floods, or water table rise due to changes in local drainage conditions may change the state of the backfill soil from unsaturated to saturated conditions. The purpose of this paper is to study the robustness of using the unsaturated soil parameters in the design of new buried pipes and the calculation of the remaining strength of in-service buried pipes by comparing the response of buried pipes for unsaturated and saturated backfill conditions using three-dimensional finite element analysis. Cast iron, concrete, and unplasticized polyvinyl chloride pipes have been considered to address the aim of the study. The results have shown that the soil saturation increases the stresses of the pipe wall, displacement of the pipe, and the soil pressure applied on the pipe. Hence, there is a need to understand and consider the unsaturated/saturated soil mechanics in the design and the analysis of buried pipes/culverts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adem, H.H., Vanapalli, S.K.: Elasticity moduli of expansive soils from dimensional analysis. Geotech. Res. 1(2), 60–72 (2014)

    Article  Google Scholar 

  • Adem, H.H., Vanapalli, S.K.: Prediction of the modulus of elasticity of compacted unsaturated expansive soils. Int. J. Geotech. Eng. 9(2), 163–175 (2015)

    Article  Google Scholar 

  • Alani, A., Faramarzi, A.: Predicting the probability of failure of cementitious sewer pipes using stochastic finite element method. Int. J. Environ. Res. Public Health. 12(6), 6641–6656 (2015)

    Article  Google Scholar 

  • Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique. 40(3), 405–430 (1990)

    Article  Google Scholar 

  • Alzabeebee, S.: Seismic response and design of buried concrete pipes subjected to soil load. Tunn. Undergr. Space Technol. 93, 103088 (2019)

    Article  Google Scholar 

  • Alzabeebee, S., Chapman, D., Jefferson, I., Faramarzi, A.: The response of buried pipes to UK standard traffic loading. Proc. Inst. Civ. Eng.- Geotech. Eng. 170(1), 38–50 (2017a)

    Article  Google Scholar 

  • Alzabeebee, S., Chapman, D.N. and Faramarzi, A., 2017b. Numerical investigation of the bedding factor of concrete pipes under deep soil fill. In the Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering (CSEE’17) Barcelona, Spain, paper number 119

  • Alzabeebee, S., Chapman, D.N., Faramarzi, A.: Development of a novel model to estimate bedding factors to ensure the economic and robust design of rigid pipes under soil loads. Tunn. Undergr. Space Technol. 71, 567–578 (2018a)

    Article  Google Scholar 

  • Alzabeebee, S., Chapman, D.N., Faramarzi, A.: A comparative study of the response of buried pipe under static and dynamic loads. Transp. Geotech. 71, 567–578 (2018b)

    Google Scholar 

  • Alzabeebee, S., Chapman, D.N., Faramarzi, A.: Innovative approach to determine the minimum wall thickness of flexible buried pipes. Geomech. Eng., Int. J. 15(2), 755–767 (2018c)

    Google Scholar 

  • Alzabeebee, S., Chapman, D., Faramarzi, A.: Economical design of buried concrete pipes subjected to UK standard traffic loading. Proc. Inst. Civ. Eng. Struct. Build. 172, 141–156 (2019). https://doi.org/10.1680/jstbu.17.00035

    Article  Google Scholar 

  • Ariyoshi, M., Tanaka, Y., Izumi, A., Kawabata, T.: In situ and laboratory testing of small diameter PVC irrigation pipes for investigation of fatigue failure. Transp. Infrastruc. Geotechnol. 5(2), 59–74 (2018)

    Article  Google Scholar 

  • ASTM D698-12e2: Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken (2012) www.astm.org. Accessed 15 July 2019

  • Balkaya, M., Moore, I.D., Sağlamer, A.: Study of non-uniform bedding due to voids under jointed PVC water distribution pipes. Geotext. Geomembr. 34, 39–50 (2012a)

    Article  Google Scholar 

  • Balkaya, M., Moore, I.D., Sağlamer, A.: Study of nonuniform bedding support because of erosion under cast iron water distribution pipes. J. Geotech. Geoenviron. Eng. 138(10), 1247–1256 (2012b)

    Article  Google Scholar 

  • Balkaya, M., Moore, I.D., Sağlamer, A.: Study of non-uniform bedding support under continuous PVC water distribution pipes. Tunn. Undergr. Space Technol. 35, 99–108 (2013)

    Article  Google Scholar 

  • Boscardin, M.D., Selig, E.T., Lin, R.S., Yang, G.R.: Hyperbolic parameter for compacted soils. J. Geotech. Eng. 116(1), 88–104 (1990)

    Article  Google Scholar 

  • Brown, S.F., Selig, E.T.: The design of pavement and rail track foundations. In: O’Reilly, M.P., Brown, S.F. (eds.) Cyclic loading of soils: from theory to practice, pp. 249–305. Blackie and Son Ltd, Glasgow and London (1991)

    Google Scholar 

  • BS 9295 (2010), Guide to the structural design of buried pipelines

  • Chaallal, O., Arockiasamy, M., Godat, A.: Numerical finite-element investigation of the parameters influencing the behavior of flexible pipes for culverts and storm sewers under truck load. J. Pipeline Syst. Eng. Pract. 6(2), 04014015 (2015)

    Article  Google Scholar 

  • Chapman, D.N., Fleming, P.R., Rogers, C.D.F., Talby, R.: The response of flexible pipes buried in sand to static surface stress. Geomech Geoeng. 2(1), 17–28 (2007)

    Article  Google Scholar 

  • Clayton, C.R., Xu, M., Whiter, J.T., Ham, A., Rust, M.: Stresses in cast-iron pipes due to seasonal shrink-swell of clay soils. Proc. Inst. Civil Eng-Water Manag. 163(3), 157–162 (2010a)

    Article  Google Scholar 

  • Clayton, C.R.I., Xu, M., Whiter, J.T., Ham, A., Rust, M.: Stresses in cast-iron pipes due to seasonal shrink-swell of clay soils. Proc. Inst. Civ. Eng.-Water Manag. 163(3), 157–162 (2010b)

    Article  Google Scholar 

  • Cui, X., Li, J., Chan, A., Chapman, D.: A 2D DEM–LBM study on soil behaviour due to locally injected fluid. Particuology. 10(2), 242–252 (2012)

    Article  Google Scholar 

  • Cui, X., Li, J., Chan, A., Chapman, D.: Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe. Powder Technol. 254, 299–306 (2014)

    Article  Google Scholar 

  • Dhar, A.S., Moore, I.D., McGrath, T.J.: Two-dimensional analysis of thermoplastic culvert deformations and strains. J. Geotech. Geoenviron. Eng. 130(2), 199–208 (2004)

    Article  Google Scholar 

  • D'Onza, F., Wheeler, S.J., Gallipoli, D., Bucio, M.B., Hofmann, M., Lloret-Cabot, M., Morancho, A.L., Mancuso, C., Pereira, J.M., Morales, E.R., Sánchez, M., Solowski, W., Tarantino, A., Toll, D.G., Vassallo, R.: Benchmarking selection of parameter values for the Barcelona basic model. Eng. Geol. 196, 99–118 (2015)

    Article  Google Scholar 

  • Elshaer, M., Daniel, J.S.: Impact of pavement layer properties on the structural performance of inundated flexible pavements. Transp. Geotech. 16, 11–20 (2018)

    Article  Google Scholar 

  • Elshaer, M., Ghayoomi, M., Daniel, J.S.: Methodology to evaluate performance of pavement structure using soil moisture profile. Road Mat. Pavement. 19, 952–971 (2017a). https://doi.org/10.1080/14680629.2017.1283356

    Article  Google Scholar 

  • Elshaer, M., Ghayoomi, M., Daniel, J.S.: Impact of subsurface water on structural performance of inundated flexible pavements. Int. J. Pavement Eng. 20, 947–957 (2017b). https://doi.org/10.1080/10298436.2017.1366767

    Article  Google Scholar 

  • García, D.B.: Investigation of culvert joints employing large scale tests and numerical simulations. In: Ph.D. Thesis. Queen’s University, Canada (2012)

    Google Scholar 

  • García, D.B., Moore, I.D., Cortés-Pérez, J.: Modeling and parametric study of gasketed bell and spigot joint in buried RC pipeline. J Pipeline Syst Eng Pract. 10(3), 04019015 (2019)

    Article  Google Scholar 

  • Izumi, A., Ono, K., Takahara, S., Sawada, Y., Kawabata, T.: Axial behavior of buried rehabilitated pipe in liquefaction ground. Transp. Infrastruc. Geotechnol. 3(2), 60–73 (2016)

    Article  Google Scholar 

  • Janbu, N.: Soil compressibility as determined by odometer and triaxial tests. In: Proceeding of the European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden (1963)

  • Ji, J., Zhang, C., Kodikara, J., Yang, S.Q.: Prediction of stress concentration factor of corrosion pits on buried pipes by least squares support vector machine. Eng. Fail. Anal. 55, 131–138 (2015)

    Article  Google Scholar 

  • Kadivar, M., Manahiloh, K.N., Kaliakin, V.N., Shenton, H.W.: Numerical investigation of dynamic load amplification in buried culverts. Transp. Infrastruc. Geotechnol. 5(1), 24–41 (2018)

    Article  Google Scholar 

  • Kang, J., Jung, Y., Ahn, Y.: Cover requirements of thermoplastic pipes used under highways. Compos. Part B. 55, 184–192 (2013a)

    Article  Google Scholar 

  • Kang, J.S., Stuart, S.J., Davidson, J.S.: Analytical evaluation of maximum cover limits for thermoplastic pipes used in highway construction. Struct. Infrastruct. Eng. 9(7), 667–674 (2013b)

    Article  Google Scholar 

  • Kang, J., Stuart, S.J., Davidson, J.S.: Analytical study of minimum cover required for thermoplastic pipes used in highway construction. Struct. Infrastruct. Eng. 10(3), 316–327 (2014)

    Article  Google Scholar 

  • Katona, M.G. (2017a), CANDE-2017 culvert analysis and design user manual and guideline, Washington

  • Katona, M.G.: Influence of soil models on structural performance of buried culverts. Int. J. Geomech. 17(1), 04016031 (2017b)

    Article  Google Scholar 

  • Khademi-Zahedi, R.: Application of the finite element method for evaluating the stress distribution in buried damaged polyethylene gas pipes. Underground Space. 4(1), 59–71 (2019)

    Article  Google Scholar 

  • Khademi-Zahedi, R., Shishesaz, M.: Application of a finite element method to stress distribution in buried patch repaired polyethylene gas pipes. Underground Space. 4(1), 48–58 (2019)

    Article  Google Scholar 

  • Khemis, A., Chaouche, A.H., Athmani, A., Tee, K.F.: Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation. Struct. Eng. Mech. 59(4), 739–759 (2016)

    Article  Google Scholar 

  • Knott, J.F., Elshaer, M., Daniel, J.S., Jacobs, J.M., Kirshen, P.: Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1–10 (2017)

    Article  Google Scholar 

  • Kuttah, D., Arvidsson, H.: Effect of groundwater table rising on the performance of a Swedish-designed gravel road. Transp. Geotech. 11, 82–96 (2017)

    Article  Google Scholar 

  • Le, T.M.H., Gallipoli, D., Sanchez, M., Wheeler, S.: Rainfall-induced differential settlements of foundations on heterogeneous unsaturated soils. Géotechnique. 63(15), 1346–1355 (2013)

    Article  Google Scholar 

  • Liu, X., Zhang, H., Xia, M., Wu, K., Chen, Y., Zheng, Q., Li, J.: Mechanical response of buried polyethylene pipelines under excavation load during pavement construction. Eng. Fail. Anal. 90, 355–370 (2018)

    Article  Google Scholar 

  • Liyanage, K., Dhar, A.S.: Stresses in cast iron water mains subjected to non-uniform bedding and localised concentrated forces. Int. J. Geotech. Eng. 12, 368–376 (2017a). https://doi.org/10.1080/19386362.2017.1282338

    Article  Google Scholar 

  • Liyanage, K.T.H., Dhar, A.S.: Effects of corrosion pits on wall stresses in cast-iron water mains. J. Pipeline Syst. Eng. Pract. 8(4), 04017023 (2017b)

    Article  Google Scholar 

  • Mai, V.T., Moore, I.D., Hoult, N.A.: Performance of two-dimensional analysis: deteriorated metal culverts under surface live load. Tunn. Undergr. Space Technol. 42, 152–160 (2014)

    Article  Google Scholar 

  • Mechanistic-Empirical Pavement Design Guide (MEPDG) (2008), “A manual of practice”, Interim Edition, AAHSTO, Washington D.C, USA

  • Mlynarski, M., Katona, M.G., McGrath, T.J.: NCHRP Report 619: modernize and upgrade CANDE for analysis and LRFD design of buried structures. Transportation Research Board, Washington (2008)

    Google Scholar 

  • Oh, W.T., Vanapalli, S.K.: Modelling the applied vertical stress and settlement relationship of shallow foundations in saturated and unsaturated sands. Can. Geotech. J. 48(3), 425–438 (2011)

    Article  Google Scholar 

  • Oh, W.T., Vanapalli, S.K.: Modelling the stress versus settlement behavior of shallow foundations in unsaturated cohesive soils extending the modified total stress approach. Soils Found. 58(2), 382–397 (2018)

    Article  Google Scholar 

  • Oh, W.T., Vanapalli, S.K., Puppala, A.J.: Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils. Can. Geotech. J. 46(8), 903–914 (2009)

    Article  Google Scholar 

  • Ono, K., Terada, K., Sawada, Y., Ling, H.I., Kawabata, T.: Fluid coupled-DEM simulation of lateral loading experiment for buried pipe in saturated sand. Transp. Infrastruc. Geotechnol. 5(2), 93–113 (2018)

    Article  Google Scholar 

  • Petersen, D.L., Nelson, C.R., Li, G., McGrath, T.J., Kitane, Y.: NCHTP Report 647: recommended design specifications for live load distribution to buried structures. Transportation Research Board, Washington (2010)

    Google Scholar 

  • Ping, W.V., Sheng, B.: Developing correlation relationship between modulus of subgrade reaction and resilient modulus for Florida subgrade soils. Transp. Res. Rec. 2232(1), 95–107 (2011)

    Article  Google Scholar 

  • Robert, D.J., Rajeev, P., Kodikara, J., Rajani, B.: Equation to predict maximum pipe stress incorporating internal and external loadings on buried pipes. Can. Geotech. J. 53(8), 1315–1331 (2016)

    Article  Google Scholar 

  • Saad, B.: Analysis of excess water impact on the structural performance of flexible pavements. Int. J. Pavement Eng. 15(5), 409–426 (2014)

    Article  Google Scholar 

  • Saevarsdottir, T., Erlingsson, S.: Effect of moisture content on pavement behaviour in a heavy vehicle simulator test. Road Mat. Pavement. 14(s1), 274–286 (2013)

    Article  Google Scholar 

  • Saevarsdottir, T., Erlingsson, S.: Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test. Road Mat. Pavement. 16(1), 1–18 (2015)

    Article  Google Scholar 

  • Shahriar, M.A.N., Sivakugan, N., Das, B.M.: Settlement correction for future water table rise in granular soils: a numerical modelling approach. Int. J. Geotech. Eng. 7(2), 214–217 (2013)

    Article  Google Scholar 

  • Shahriar, M.A., Sivakugan, N., Das, B.M., Urquhart, A., Tapiolas, M.: Water table correction factors for settlements of shallow foundations in granular soils. Int. J. Geomech. 15(1), 06014015 (2015)

    Article  Google Scholar 

  • Tee, K.F., Khan, L.R., Chen, H.P.: Probabilistic failure analysis of underground flexible pipes. Struct. Eng. Mech. 47(2), 167–183 (2013)

    Article  Google Scholar 

  • Terzi, N.U., Yılmazturk, F., Yıldırım, S., Kılıç, H.: Experimental investigations of backfill conditions on the performance of high-density polyethelenepipes. Exp. Techn. 36(2), 40–49 (2012)

    Article  Google Scholar 

  • Terzi, N.U., Erenson, C., Selçuk, M.E.: Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations. Geomech. Eng., Int. J. 9(4), 447–464 (2015)

    Article  Google Scholar 

  • Vanapalli, S.K., Oh, W.T.: A model for predicting the modulus of elasticity of unsaturated soils using the soil-water characteristic curve. Int. J. Geotech. Eng. 4(4), 425–433 (2010)

    Article  Google Scholar 

  • Witczak, M.W., Houston, W.N., Andrei, D.: Guide for mechanistic-empirical design of new and rehabilitated pavements structures. Transportation Research Board, Washington (2000)

    Google Scholar 

  • Xu, M., Shen, D., Rakitin, B.: The longitudinal response of buried large-diameter reinforced concrete pipeline with gasketed bell-and-spigot joints subjected to traffic loading. Tunn. Undergr. Space Technol. 64, 117–132 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the Engineering and Physical Sciences Research Council, UK, for partially funding this research through the Assessing the Underworld project. The author also acknowledges the Higher Committee for Education Development in Iraq for funding his PhD study at the University of Birmingham, which has enabled him to do this research. Finally, the author wishes to state his appreciation and thanks to Prof. David Chapman and Dr. Asaad Faramarzi for their useful comments on the idea and the methodology of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Alzabeebee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzabeebee, S. Influence of Backfill Soil Saturation on the Structural Response of Buried Pipes. Transp. Infrastruct. Geotech. 7, 156–174 (2020). https://doi.org/10.1007/s40515-019-00094-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40515-019-00094-7

Keywords

Navigation