Skip to main content

Advertisement

Log in

Molecular Diagnosis in Fungal Infection Control

  • New Technologies and Advances in Infection Prevention (A Marra, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Fungal infections have been increasingly concerned because of their substantial morbidity and mortality especially among immunocompromised individuals. Early diagnosis is crucial and shown to improve treatment outcomes. The current goal standard methods including fungal culture and pathology are far from ideal due to their poor sensitivity, time consuming and invasive procedures often required. Molecular techniques have been developed as new diagnostic methods in many infectious disease conditions including fungal infection. These molecular approaches are available for variety of fungal species, proved to expedite time to initiate an appropriate antifungal agent and can be used directly in clinical specimens. Moreover, a combination of new molecular techniques and conventional diagnostic tests is attractive since it provided higher sensitivity without sacrificing specificity. In addition, these molecular tests are potentially used in current clinical practice as a marker to initiate prophylactic, preemptive, or empirical treatments. However, further clinical validation is required before generalizing these tests to a routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chen Y, Wang H, Kantarjian H, et al. Trends in chronic myeloid leukemia incidence and survival in the United States from 1975 to 2009. Leuk Lymphoma. 2013;54:1411–7.

    Article  PubMed  Google Scholar 

  2. Jr CS, Koval CE, van Duin D, et al. Selecting suitable solid organ transplant donor: reducing the risk of donor-transmitted infections. World J Transplant. 2014;4:43–56.

    PubMed Central  PubMed  Google Scholar 

  3. Gooley TA, Chien JW, Pergam SA, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. O’Shea DT, Humar A. Life-threatening infection in transplant recipients. Crit Care Clin. 2013;29:953–73.

    Article  PubMed  Google Scholar 

  5. Bodro M, Sabé N, Gomilla A, et al. Risk factors, clinical characteristics, and outcomes of invasive fungal infections in solid organ transplant recipients. Transplant Proc. 2012;44:2682–5.

    Article  CAS  PubMed  Google Scholar 

  6. Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50:1091–100.

    Article  PubMed  Google Scholar 

  7. Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–11.

    Article  PubMed  Google Scholar 

  8. Park BJ, Pappas PG, Wannemuehler KA, et al. Invasive non-Aspergillus mold infections in transplant recipients, United States, 2001–2006. Emerg Infect Dis. 2011;17:1855–64.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Arvantis M, Anagnostou T, Fuchs BB, et al. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev. 2014;27:490–526. This article is an extensive review for both molecular and non-molecular methods in invasive fungal infection diagnosis which is outstanding resource to get an overview picture of this topic.

    Article  Google Scholar 

  10. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORT/MSG) Consensus Group. Clin Infect Dis. 2008;46:1813–21.

    Article  PubMed Central  PubMed  Google Scholar 

  11. White PL, Perry MD, Barnes RA. An update on the molecular diagnosis of invasive fungal disease. FEMS Microbial Lett. 2009;296:1–10.

    Article  CAS  Google Scholar 

  12. Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocromial candidemia, revisited. Clin Infect Dis. 2003;37:1172–7.

    Article  PubMed  Google Scholar 

  13. Lockhart SR, Wagner D, Iqbal N, et al. Comparison of in vitro susceptibility characteristics of Candida species from cases of invasive candidiasis in solid organ transplant recipients: Transplant-Associated infections Surveillance Network (TRANSNET), 2001 to 2006. J ClinMicrobiol. 2011;49:2404–10.

    Google Scholar 

  14. Pfaller MA, Andes DR, Diekema DJ, et al. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS One. 2014;9:e101510.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bassetti M, Merelli M, Righi E, et al. Epidemiology, species distribution, antifungal susceptibility, and outcome of candidemia across five sites in Italy and Spain. J Clin Microbiol. 2013;51:4167–72.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ellepola AN, Morrison CJ. Laboratory diagnosis of invasive candidiasis. J Microbiol. 2005;43:65–84.

    PubMed  Google Scholar 

  17. Parkins MD, Sabuda DM, Elsayed S, et al. Adequacy of empirical antifungal therapy and effect on outcome among patients with invasive Candida species infections. J Antimicrob Chemother. 2007;60:613–8.

    Article  CAS  PubMed  Google Scholar 

  18. Avni T, Leibovici L, Paul M. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol. 2011;49:665–70.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Xafranski H, Melo AS, Machado AM, et al. A quick and low-cost PCR-based assay for Candida spp. identification in positive blood culture bottles. BMC Infect Dis 2013;13:467

  20. Taira CL, Okay TS, Delgado AF, et al. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients. BMC Infect Dis. 2014;14:406.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Nguyen MH, Wissel MC, Shields RK, et al. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood culture in the diagnosis of invasive candidiasis. Clin Infect Dis. 2012;54:1240–8.

    Article  CAS  PubMed  Google Scholar 

  22. Fortún J, Meije Y, Buitrago MJ, et al.: Clinical validation of a multiplex real-time PCR assay for detection of invasive candidiasis in intensive care unit patients. J Antimicrob Chemother 2014, pii: dku225.

  23. Lau A, Sorrell TC, Chen S, et al. Multiplex tandem PCR: a novel platform for rapid detection and identification of fungal pathogens from blood culture specimens. J Clin Microbiol. 2008;46:3021–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Harris DM, Hata DJ. Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: a retrospective clinical study. Ann Clin Microbiol Antimicrob. 2013;12:2.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lau A, Halliday C, Chen SC, et al. Comparison of whole blood, serum, and plasma for early detection of candidemia by multiplex-tandem PCR. J Clin Microbiol. 2010;48:811–6.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50:2058–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Neely LA, Audeh M, Phung NA, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5:182ra54. This article demonstrated concepts and performance of T2MR, the recent FDA approved rapid test for candidemia that can become an attractive option in clinical practice.

    Article  PubMed  Google Scholar 

  28. Beyda ND, Alam MJ, Garey KW. Comparison of the T2DX instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Mycology. 2013;77:324–6.

    CAS  Google Scholar 

  29. Aitken SL, Beyda ND, Shah DN, et al. Clinical practice patterns in hospitalized patients at risk for invasive candidiasis: role of antifungal stewardship programs in an era of rapid diagnostics. Ann Pharmacother. 2014;48:683–90.

    Article  PubMed  Google Scholar 

  30. Marukutira T, Huprikar S, Azie N, et al. Clinical characteristics and outcomes in 303 HIV infected patients with invasive fungal infections: data from the Prospective Antifungal Therapy Alliance registry, a multicenter, observational study. HIV AIDS (Auckl). 2014;6:39–47.

    Article  Google Scholar 

  31. Neofytos D, Fishman JA, Horn D, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis. 2010;12:220–9.

    Article  CAS  PubMed  Google Scholar 

  32. Baddley JW. Forrest GN; AST Infectious Diseases Community of Practice: Cryptococcosis in solid organ transplantation. Am J Transplant. 2013;13:242–9.

    Article  CAS  PubMed  Google Scholar 

  33. Singh N, Alexander BD, Lortholary O, et al. Cryptococcus neoformans in organ transplant recipients: impact of calcineurin-inhibitor agents on mortality. J Infect Dis. 2007;195:756–64.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Qishui O, Ling J, Ni L, et al. Comparison of real-time fluorescence quantitative PCR measurements of VAD1 mRNA with three conventional methods in diagnosis and follow-up treatment of Cryptococcus neoformans infection. Mycoses. 2012;55:326–232.

    Article  PubMed  Google Scholar 

  35. Feng X, Fu X, Ling B, et al. Development of a singleplex PCR assay for rapid identification and differentiation of Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, Cryptococcus gattii, and hybrids. J Clin Microbiol. 2013;51:1920–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. EurRespir Rev. 2011;20:156–74.

    CAS  Google Scholar 

  37. Nucci M, Nouér SA, Cappone D. Early diagnosis of invasive pulmonary aspergillosis in hematologic patients: an opportunity to improve the outcome. Haematologica. 2013;98:1657–60.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Guinea J, Bouza E. Current Challenges in the Microbiological Diagnosis of Invasive Aspergillosis. Mycopathologia. 2014;178(5–6):403–16. doi:10.1007/s11046-014-9763-3.

    Article  PubMed  Google Scholar 

  39. Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using galactomannan assay: meta-analysis. Clin Infect Dis. 2006;42:1417–27.

    Article  CAS  PubMed  Google Scholar 

  40. Fisher CE, Stevens AM, Leisenring W, et al. The serum galactomannan index predicts mortality in hematopoietic stem cell transplant recipients with invasive aspergillosis. Clin Infect Dis. 2013;57:1001–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hummel M, Spiess B, Roder J, et al. Detection of Aspergillus DNA by a nested PCR assay is able to improve the diagnosis of invasive aspergillosis in paediatric patients. J Med Microbiol. 2009;58:1291–7.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Gao L, Ding Y, et al. Establishment and application of real-time quantitative PCR for diagnosing invasive aspergillosis via the blood in hematological patients: targeting a specific sequence of Aspergillus 28S-ITS2. BMC Infect Dis. 2013;13:255.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mengoli C, Cruciani M, Barnes RA, et al. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9:89–96.

    Article  CAS  PubMed  Google Scholar 

  44. Morrissey CO, Chen SC, Sorrell TC, et al. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: a randomised controlled trial. Lencet Infect Dis. 2013;13:519–28. This randomized controlled trial study demonstrated a reduction of empirical antifungal treatment without changing mortality rate in galactomannan and PCR arm.

    Article  CAS  Google Scholar 

  45. van der Linden JW, Snelders E, Arends JP, et al. Rapid diagnosis of azole-resistant aspergillosis by direct PCR using tissue specimens. J Clin Microbiol. 2010;48:1478–80.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Luong ML, Clancy CJ, Vadnerkar A, et al. Comparison of an Aspergillus real-time polymerase chain reaction assay with galactomannan testing of bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in lung transplant recipients. Clin Infect Dis. 2011;52:1218–26. This study shown the benefit of galactomannan and Aspergillus PCR in BAL which can facilitate diagnosis of IPA in lung transplant recipients. Moreover PCR is able to demonstrated patients with Aspergillus colonization which can be used as a marker for prophylactic approach.

    Article  CAS  PubMed  Google Scholar 

  47. Aquino VR, Nagel F, Andreolla HF, et al. The performance of real-time PCR, galactomannan, and fungal culture in the diagnosis of invasive aspergillosis in ventilated patients with chronic obstructive pulmonary disease (COPD). Mycopathologia. 2012;174:163–9.

    Article  CAS  PubMed  Google Scholar 

  48. Guinea J, Padilla C, Escribano P, et al. Evaluation of MycAssay Aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. PLoS One. 2013;8:e61545.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Rogers TR, Morton CO, Springer J, et al. Combined real-time PCR and galactomannan surveillance improves diagnosis of invasive aspergillosis in high risk patients with haematological malignancies. Br J Haematol. 2013;161:517–24.

    Article  CAS  PubMed  Google Scholar 

  50. Avni T, Levy I, Sprecher H, et al. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J Clin Microbiol. 2012;50:3652–8.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Reinwald M, Spiess B, Heinz WJ, et al. Aspergillus PCR-based investigation of fresh tissue and effusion samples in patients with suspected invasive Aspergillosis enhances diagnostic capabilities. J Clin Microbiol. 2013;51:4178–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Spiess B, Seifarth W, Merker N, et al. Development of noval PCR assays to detect azole resistance-mediating mutations of the Aspergillus fumingatus cyp51A gene in primary clinical samples from neutropenic patients. Antimicrob Agents Chemother. 2012;56:3905–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lanternier F, Shun HY, Ribaud P, et al. Mucormycosis in organ and stem cell transplant recipients. Clin Infect Dis. 2012;54:1629–36.

    Article  PubMed  Google Scholar 

  54. Walsh TJ, Gamaletsou MN, McGinnnis MR, et al. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis. Clin Infect Dis. 2012;54:S55–60.

    Article  PubMed  Google Scholar 

  55. Hata DJ, Buckwalter SP, Pritt BS, et al. Real-time PCR method for detection of zygomycetes. J Clin Microbiol. 2008;46:2353–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bernal-Martinez L, Buitrago MJ, Castelli MV, et al. Development of a single tube multiplex real-time PCR to detect the most clinically relevant Mucormycetes species. Clin Microbiol Infect. 2013;19:E1–7.

    Article  CAS  PubMed  Google Scholar 

  57. Hammond SP, Bialek R, Milner DA, et al. Molecular methods to improve diagnosis and identification of mucormycosis. J Clin Microbiol. 2011;49:2151–3.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Millon L, Larosa F, Lepiller Q, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56:e95–101. This study shown early detection DNA by qPCR which can be useful in clinical practice as a marker of preemptive therapy for mucormycosis in at risk patients.

    Article  CAS  PubMed  Google Scholar 

  59. Castelli MV, Buitrago MJ, Bernal-Martinez L, et al. Development and validation of a quantitative PCR assay for diagnosis of scedosporiosis. J Clin Microbiol. 2008;46:3412–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Harun A, Blyth CC, Gilgado F, et al. Development and validation of a multiplex PCR for detection of Scedosporium spp. in respiratory tract specimens from patients with cystic fibrosis. J Clin Microbiol. 2011;49:1508–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Lu Q, van den Ende AH, de Hoog GS, et al. Reverse line blot hybridisation screening of Pseudallescheria/Scedosporium species in patients with cystic fibrosis. Mycoses. 2011;54:5–11.

    Article  PubMed  Google Scholar 

  62. Kauffman CA, Freifeld AG, Andes DR, et al. Endemic fungal infections in solid organ and hematopoietic cell transplant recipients enrolled in the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis. 2014;16:213–24.

    Article  CAS  PubMed  Google Scholar 

  63. Assi M, Martin S, Wheat LJ, et al. Histoplasmosis after solid organ transplant. Clin Infect Dis. 2013;57:1542–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Durkin M, Connolly P, Kuberski T, et al. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin Infect Dis. 2008;47:e69–73.

    Article  PubMed  Google Scholar 

  65. Grim SA, Proia L, Miller R, et al. A multicenter study of histoplasmosis and blastomycosis after solid organ transplantation. Transpl Infect Dis. 2012;14:17–23.

    Article  CAS  PubMed  Google Scholar 

  66. Babady NE, Buckwalter SP, Hall L, et al. Detection of Blastomyces dermatitidis and Histoplasma capsulatum from culture isolates and clinical specimens by use real-time PCR. J Clin Microbiol. 2011;49:3204–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ohno H, Tanabe K, Umeyama T, et al. Application of nested PCR for diagnosis of Histoplasmosis. J Infect Chemother. 2013;19:999–1003.

    Article  CAS  PubMed  Google Scholar 

  68. Koepsell SA, Hinrichs SH, Iwen PC. Applying a real-time PCR assay for Histoplasma capsulatum to clinically relevant formalin-fixed paraffin-embedded human tissue. J Clin Microbiol. 2012;50:3395–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Binnicker MJ, Popa AS, Catania J, et al. Meningeal coccidioidomycosis diagnosed by real-time polymerase chain reaction analysis of cerebrospinal fluid. Mycopathologia. 2011;171:285–9.

    Article  PubMed  Google Scholar 

  70. Chang SS, Hsieh WH, Liu TS, et al. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis – a systemic review and meta-analysis. PLoS One. 2013;8:e62323. This systemic review suggested that LC-SF has high rule-in value for early detection of pathogens in patients with sepsis but it still has optimal sensitivity.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Mancini N, Clerici D, Diotti R, et al. Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies. J Med Microbiol. 2008;57:601–4.

    Article  PubMed  Google Scholar 

  72. Paolucci M, Stanzani M, Melchionda F, et al. Routine use of a real-time polymerase chain reaction method for detection of bloodstream infections in neutropaenic patients. Diagn Microbiol Infect Dis. 2013;75:130–4.

    Article  CAS  PubMed  Google Scholar 

  73. Bravo D, Blanquer J, Tormo M, et al. Diagnostic accuracy and potential clinical value of the LightCyclerSeptiFast assay in the management of bloodstream infections occurring in neutropenic and critically ill patients. Int J Infect Dis. 2011;15:e326–331.

    Article  PubMed  Google Scholar 

  74. Leitner E, Kessler HH, Spindelboeck W, et al. Comparison of two molecular assays with conventional blood culture for diagnosis of sepsis. J Microbiol Methods. 2013;92:253–5.

    Article  CAS  PubMed  Google Scholar 

  75. Maubon D, Hamidfar-Roy R, Courby S, et al. Therapeutic impact and diagnostic performance of multiplex PCR in patients with malignancies and suspected sepsis. J Infect. 2010;61:335–42.

    Article  PubMed  Google Scholar 

  76. Dierkes C, Ehrenstein B, Siebig S, et al. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect. 2009;9:126.

    Article  Google Scholar 

  77. Sugawara Y, Nakase K, Nakamura A, et al. Clinical utility of a panfungal polymerase chain reaction assay for invasive fungal diseases in patients with haematologic disorder. Eur J Hematol. 2013;90:331–9.

    Article  CAS  Google Scholar 

  78. Landlinger C, Preuner S, Baskova L, et al. Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia. 2010;24:2032–8.

    Article  CAS  PubMed  Google Scholar 

  79. Buitrago MJ, Bernal-Martinez L, Castelli MV, et al. Performance of panfungal-and specific-PCR-based procedures for etiological diagnosis of invasive fungal diseases on tissue biopsy specimens with proven infection a 7-year retrospective analysis from a reference laboratory. J Clin Microbiol. 2014;52:1737–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Munoz-Cadavid C, Rudd S, Zaki SR, et al. Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR. J Clin Microbiol. 2010;48:2147–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Yaman G, Akyar I, Can S. Evaluation or the MALDI TOF-MS method for identification of Candida strains isolated from blood cultures. Diagn Microbiol Infect Dis. 2012;73:65–7.

    Article  CAS  PubMed  Google Scholar 

  82. Chen JH, Yam WC, Ngan AH, et al. Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol. 2013;51:3981–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Lacroix C, Gicquel A, Sendid B, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20:153–8.

    Article  CAS  PubMed  Google Scholar 

  84. Huang AM, Newton D, Kunapuli A, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteria and candidemia. Clin Infect Dis. 2013;57:1237–45. This study demonstrated a significant impact in antimicrobial stewardship program as it decreased time to organism identification and time to optimal antimicrobial therapy.

    Article  CAS  PubMed  Google Scholar 

  85. De Carolis E, Posteraro B, Lass-Florl C, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:475–84.

    Article  PubMed  Google Scholar 

  86. Laffler TG, Cummins LL, McClain CM, et al. Enhanced diagnostic yields of bacteremia and candidemia in blood specimens by PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 2013;51:3535–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Simner PJ, Buckwalter SP, Uhl JR, et al. Detection and identification of yeasts from formalin-fixed, paraffin embedded tissue by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 2013;51:3731–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Shin JH, Ranken R, Sefers SE, et al. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J Clin Microbiol. 2013;51:136–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Stone NR, Gorton RL, Barker K, et al. Evaluation of PNA-FISH yeast traffic light for rapid identification of yeast directly from positive blood cultures and assessment of clinical impact. J Clin Microbiol. 2013;51:1301–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Drgona L, Khachatryan A, Stephens J, et al. Clinical and economic burden of invasive fungal diseases in Europe: focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur J Clin Microbiol Infect Dis. 2014;33:7–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Playford EG, Lipman J, Sorrell TC. Prophylaxis, empirical and preemptive treatment of invasive candidiasis. Curr Opin Crit Care. 2010;16:470–4.

    Article  PubMed  Google Scholar 

  92. Ziakas PD, Kourbeti IS, Mylonakis E. Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis. Clin Ther. 2014;36:292–306.

    Article  CAS  PubMed  Google Scholar 

  93. Robenshtok E, Gafter-Gvill A, Goldberg E, et al. Antifungal prophylaxis in cancer patients after chemotherapy or hematopoietic stem-cell transplantation: systematic review and meta-analysis. J Clin Oncol. 2007;25:5471–89.

    Article  CAS  PubMed  Google Scholar 

  94. Cruciani M, Mengoli C, Malena M, et al. Antifungal prophylaxis in liver transplant patients: a systematic review and meta-analysis. Liver Transpl. 2006;12:850–8.

    Article  PubMed  Google Scholar 

  95. Neoh CF, Snell GI, Levvey B, et al. Preemptive treatment with voriconazole in lung transplant recipients. Transpl Infect Dis. 2013;15:344–53.

    Article  CAS  PubMed  Google Scholar 

  96. Ostrosky-Zeichner L, Shoham S, Vazquez J, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58:1219–26.

    Article  CAS  PubMed  Google Scholar 

  97. Maertens J, Theunissen K, Verhoef G, et al. Galactomannan and computed tomography-based preemptive antifungal therapy in neutropenic patients at high risk for invasive fungal infection: a prospective feasibility study. Clin Infect Dis. 2005;41:1242–50.

    Article  CAS  PubMed  Google Scholar 

  98. Hebart H, Klingspor L, Klingebiel T, et al. A prospective randomized controlled trial comparing PCR-based and empirical treatment with liposomal amphotericin B in patients after allo-SCT. Bone Marrow Transplant. 2009;43:553–61.

    Article  CAS  PubMed  Google Scholar 

  99. Cordonnier C, Pautas C, Maury S, et al. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48:1042–51.

    Article  CAS  PubMed  Google Scholar 

  100. Pagano L, Caira M, Nosari A, et al. The use and efficacy of empirical versus pre-emptive therapy in the management of fungal infections: the HEMA e-Chart Project. Haematologica. 2011;96:1366–70.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Hanson KE, Pfeiffer CD, Lease ED, et al. β-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS One 2012;7:e42282.

  102. Jaijakul S, Vazquez JA, Swanson RN, et al. (1,3)-β-D-glucan as a prognostic marker of treatment response in invasive candidiasis. Clin Infect Dis. 2012;55:521–6.

    Article  CAS  PubMed  Google Scholar 

  103. Fernández-Cruz A, Marín M, Kestler M, et al. The value of combining blood culture and SeptiFast data for predicting complicated bloodstream infections caused by gram-positive bacteria and Candida species. J Clin Microbiol. 2013;51:1130–6. This study shown possible utility of persistent positive SeptiFast to determine complicated blood stream infection.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jakapat Vanichanan has no conflicts of interest. Luis Ostrosky-Zeichner is a consultant and/or speaker for Pfizer, Merck and Astellas and has received research funding from Pfizer, Merck, Astellas, Associates of Cape Cod, and T2 Biosystems.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakapat Vanichanan MD.

Additional information

This article is part of the Topical Collection on New Technologies and Advances in Infection Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanichanan, J., Ostrosky-Zeichner, L. Molecular Diagnosis in Fungal Infection Control. Curr Treat Options Infect Dis 7, 1–13 (2015). https://doi.org/10.1007/s40506-015-0040-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-015-0040-x

Keywords

Navigation