Stochastic physics, complex systems and biology Authors Hong Qian Department of Applied Mathematics University of Washington

Abstract
In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod’s necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibria, spontaneous random “mutations” and “adaptations”. On an evolutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.

The 1st Gordon Research Conference on “Stochastic Physics in Biology”, chaired by K. A. Dill, was held on January 23–28, 2011, in Ventura, CA.

References 1.

Mackey, M. C. (1989) The dynamic origin of increasing entropy. Rev. Mod. Phys., 61, 981–1015.

CrossRef 2.

Ge, H., Pressé, S., Ghosh, K. and Dill, K. A. (2012) Markov processes follow from the principle of maximum caliber. J. Chem. Phys., 136, 064108.

PubMed CrossRef 3.

Hopfield, J. J. (1994) Physics, computation, and why biology looks so different? J. Theor. Biol., 171, 53–60.

CrossRef 4.

Knight, J. (2002) Physics meets biology: bridging the culture gap. Nature, 419, 244–246.

PubMed CrossRef 5.

Prigogine, I. and Stengers, I. (1984) Order Out of Chaos: Man’s New Dialogue with Nature. Boulder, CO: New Sci. Lib. Shambhala.

6.

Haken, H. (1983) Synergetics, An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. 3rd rev. enl. ed. New York: Springer-Verlag.

7.

Lasota, A. and Mackey, M. C. (1994) Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. New York: Springer-Verlag.

8.

Abarbanel, H. D. I., Brown, R., Sidorowich, J. and Tsimring, L. (1993) The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65, 1331–1392.

CrossRef 9.

Tong, H. (1993) Non-Linear Time Series: A Dynamical System Approach. UK: Oxford University Press.

10.

Qian, H., Shi, P.-Z. and Xing, J. (2009) Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys. Chem. Chem. Phys., 11, 4861–4870.

PubMed CrossRef 11.

Qian, H. (2011) Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reactions systems — an analytical theory. Nonlinearity, 24, R19–R49.

CrossRef 12.

Wax, N. (1954) Selected Papers on Noise and Stochastic Processes. New York: Dover Pubns.

13.

Onsager, L. and Machlup, S. (1953) Fluctuations and irreversible processes. Phys. Rev., 91, 1505–1512.

CrossRef 14.

Fox, R. F. (1978) Gaussian stochastic processes in physics. Phys. Rep., 48, 179–283.

CrossRef 15.

Ge, H. and Qian, H. (2011) Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface, 8, 107–116.

PubMed CrossRef 16.

Qian, H. and Ge, H. (2012) Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. Mol. Cell. Biomech., 9, 1–30.

PubMed 17.

Monod, J. (1972) Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. New York: Vintage Books.

18.

Shapiro, B. E. and Qian, H. (1997) A quantitative analysis of single protein-ligand complex separation with the atomic force microscope. Biophys. Chem., 67, 211–219.

PubMed CrossRef 19.

Moore, P. B. (2012) How should we think about the ribosome? Annu. Rev. Biophys., 41, 1–19.

PubMed CrossRef 20.

Phillips, R. and Quake, S. R. (2006) The biological frontier of physics. Phys. Today, 59, 38–43.

CrossRef 21.

Bustamante, C., Liphardt, J. and Ritort, F. (2005) The nonequilibrium thermodynamics of small systems. Phys. Today, 58, 43–48.

CrossRef 22.

Qian, H. (2012) Hill’s small systems nanothermodynamics: a simple macromolecular partition problem with a statistical perspective. J. Biol. Phys., 38, 201–207.

PubMed CrossRef 23.

Westerhoff, H. V. and Palsson, B. Ø. (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol., 22, 1249–1252.

PubMed CrossRef 24.

Qian, H. (2012) Cooperativity in cellular biochemical processes: noiseenhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annu. Rev. Biophys., 41, 179–204.

PubMed CrossRef 25.

Beard, D. A. and Kushmerick, M. J. (2009) Strong inference for systems biology. PLoS Comput. Biol., 5, e1000459.

PubMed CrossRef 26.

Koonin, E. V. (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res., 37, 1011–1034.

PubMed CrossRef 27.

Alberts, B. (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell, 92, 291–294.

PubMed CrossRef 28.

Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186.

PubMed CrossRef 29.

Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362.

PubMed CrossRef 30.

Kirschner, M. W. and Gerhart, J. C. (2005) The Plausibility of Life: Resolving Darwin’s Dilemma. New Haven, CT: Yale University Press.

31.

Ge, H. and Qian, H. (2010) Physical origins of entropy production, free energy dissipation, and their mathematical representations. Phys. Rev. E, 81, 051133.

CrossRef 32.

Zhang, X.-J., Qian, H. and Qian, M. (2012) Stochastic theory of nonequilibrium steady states and its applications (Part I). Phys. Rep., 510, 1–86.

CrossRef 33.

Ge, H., Qian, M. and Qian, H. (2012) Stochastic theory of nonequilibrium steady states (Part II): Applications in chemical biophysics. Phys. Rep., 510, 87–118.

CrossRef 34.

Jiang, D.-Q., Qian, M. and Qian, M.-P. (2004) Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Lecture Notes in Mathematics, Vol. 1833). Berlin: Springer-Verlag.

CrossRef 35.

Von Bertalanffy, L. (1950) The theory of open systems in physics and biology. Science, 111, 23–29.

CrossRef 36.

Qian, H. (2007) Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem., 58, 113–142.

PubMed CrossRef 37.

Wang, J., Xu, L. and Wang, E. K. (2008) Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA, 105, 12271–12276.

PubMed CrossRef 38.

Wang, J., Zhang, K. and Wang, E. K. (2010) Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys., 133, 125103.

PubMed CrossRef 39.

Wang, J., Zhang, K., Xu, L. and Wang, E. K. (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA, 108, 8257–8262.

PubMed CrossRef 40.

Ge, H. and Qian, H. (2012) Analytical mechanics in stochastic dynamics: most probable path, large-deviation rate function and Hamilton-Jacobi equation. Int. J. Mod. Phys. B, 26, 1230012.

CrossRef 41.

Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell, 100, 57–70.

PubMed CrossRef 42.

Ao, P., Galas, D., Hood, L. and Zhu, X.-M. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678–684.

PubMed CrossRef 43.

Ewens, W. J. (2004) Mathematical Population Genetics I. Theoretical Introduction. New York: Springer.

CrossRef 44.

Ao, P. (2005) Laws in Darwinian evolutionary theory. Phys. Life Rev., 2, 117–156.

CrossRef 45.

Ao, P. (2008) Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys., 49, 1073–1090.

PubMed CrossRef 46.

Qian H. (2012) A decomposition of irreversible diffusion processes without detailed balance. arXiv.org/abs/1204.6496.

© Higher Education Press and Springer-Verlag GmbH 2013