Skip to main content

Advertisement

Log in

Molecular Pathogenesis of Leprosy

  • Tropical Dermatology (TL Phung, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Leprosy is a chronic infectious granulomatous disease caused by the obligate intracellular bacteria Mycobacterium leprae. M. leprae causes symptoms in the skin, peripheral nerves, and other tissues. Type 1 (reversal reaction) and type 2 (erythema nodosum leprosum) lepra reactions are the main mechanisms of skin lesions, nerve damage, and other types of tissue damages. Susceptibility to mycobacterial infection and the clinical presentations of the disease are associated with aberrant host immune response, which forms the spectrum and pathologic manifestations of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bhat RM, Prakash C. Leprosy: an overview of pathophysiology. Interdiscip Perspect Infect Dis. 2012;2012:181089.

    PubMed  PubMed Central  Google Scholar 

  2. Modlin RL. The innate immune response in leprosy. Curr Opin Immunol. 2010;22(1):48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarno EN et al. Serum levels of tumour necrosis factor-alpha and interleukin-1 beta during leprosy reactional states. Clin Exp Immunol. 1991;84(1):103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baeza I et al. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids. Mem Inst Oswaldo Cruz. 2012;107 Suppl 1:95–103.

    Article  CAS  PubMed  Google Scholar 

  5. White C, Franco-Paredes C. Leprosy in the 21st century. Clin Microbiol Rev. 2015;28(1):80–94. This article discusses recent findings relating to genetic susceptibility and treatment options for leprosy as well as the implications of these findings to improve health outcomes for leprosy patients.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pinheiro RO et al. Mycobacterium leprae-host-cell interactions and genetic determinants in leprosy: an overview. Future Microbiol. 2011;6(2):217–30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duarte-Cunha M, Marceloda Cunha G, Souza-Santos R. Geographical heterogeneity in the analysis of factors associated with leprosy in an endemic area of Brazil: are we eliminating the disease? BMC Infect Dis. 2015;15:196.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang F et al. Evidence for an association of HLA-DRB1*15 and DRB1*09 with leprosy and the impact of DRB1*09 on disease onset in a Chinese Han population. BMC Med Genet. 2009;10:133.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang Q et al. Chromosome 2p14 is linked to susceptibility to leprosy. PLoS One. 2012;7(1):e29747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bezerra HG et al. Longitudinal geographic miss (LGM) in robotic assisted versus manual percutaneous coronary interventions. J Interv Cardiol. 2015;28(5):449–55.

    Article  PubMed  Google Scholar 

  11. Araujo SR et al. Examining ERBB2 as a candidate gene for susceptibility to leprosy (Hansen’s disease) in Brazil. Mem Inst Oswaldo Cruz. 2014;109(2):182–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rego JL et al. The role of ERBB2 gene polymorphisms in leprosy susceptibility. Braz J Infect Dis. 2015;19(2):206–8.

    Article  PubMed  Google Scholar 

  13. Pinto P et al. Influence of genetic ancestry on INDEL markers of NFKbeta1, CASP8, PAR1, IL4 and CYP19A1 genes in leprosy patients. PLoS Negl Trop Dis. 2015;9(9):e0004050.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  15. Rajalingam R. Human diversity of killer cell immunoglobulin-like receptors and disease. Korean J Hematol. 2011;46(4):216–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jarduli LR et al. Influence of KIR genes and their HLA ligands in the pathogenesis of leprosy in a hyperendemic population of Rondonopolis. Southern Brazil BMC Infect Dis. 2014;14:438.

    Article  PubMed  Google Scholar 

  17. Silva LM et al. Immunohistochemical analysis of the expression of cellular transcription NFkappaB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy. Hum Pathol. 2015;46(5):746–52.

    Article  CAS  PubMed  Google Scholar 

  18. Singh I et al. Molecular mimicry between Mycobacterium leprae proteins (50S ribosomal protein L2 and Lysyl-tRNA synthetase) and myelin basic protein: a possible mechanism of nerve damage in leprosy. Microbes Infect. 2015;17(4):247–57. Molecular mimicry is a possible mechanism of nerve damage in leprosy through the action of the host auto-antibodies.

    Article  CAS  PubMed  Google Scholar 

  19. Singh I et al. Molecular mimicry between HSP 65 of Mycobacterium leprae and cytokeratin 10 of the host keratin; role in pathogenesis of leprosy. Cell Immunol. 2012;278(1-2):63–75.

    Article  CAS  PubMed  Google Scholar 

  20. Attia EA et al. Circulating CD4+ CD25 high FoxP3+ T cells vary in different clinical forms of leprosy. Int J Dermatol. 2010;49(10):1152–8.

    Article  CAS  PubMed  Google Scholar 

  21. Abdallah M et al. Estimation of serum level of interleukin-17 and interleukin-4 in leprosy, towards more understanding of leprosy immunopathogenesis. Indian J Dermatol Venereol Leprol. 2013;79(6):772–6.

    Article  PubMed  Google Scholar 

  22. Saini C, Ramesh V, Nath I. CD4+ Th17 cells discriminate clinical types and constitute a third subset of non Th1, Non Th2 T cells in human leprosy. PLoS Negl Trop Dis. 2013;7(7):e2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attia EA et al. Serum Th17 cytokines in leprosy: correlation with circulating CD4(+) CD25 (high)FoxP3 (+) T-regs cells, as well as down regulatory cytokines. Arch Dermatol Res. 2014;306(9):793–801.

    Article  CAS  PubMed  Google Scholar 

  24. Soilleux EJ et al. DC-SIGN association with the Th2 environment of lepromatous lesions: cause or effect? J Pathol. 2006;209(2):182–9.

    Article  CAS  PubMed  Google Scholar 

  25. Geijtenbeek TB et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003;197(1):7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berrington WR et al. Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis. 2010;201(9):1422–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schenk M et al. NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy. Nat Med. 2012;18(4):555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devos S et al. Allergen-induced interleukin-9 production in vitro: correlation with atopy in human adults and comparison with interleukin-5 and interleukin-13. Clin Exp Allergy. 2006;36(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  29. Finiasz MR et al. IL-9 promotes anti-Mycobacterium leprae cytotoxicity: involvement of IFNgamma. Clin Exp Immunol. 2007;147(1):139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayakawa H et al. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem. 2007;282(36):26369–80.

    Article  CAS  PubMed  Google Scholar 

  31. Lobato LS et al. Statins increase rifampin mycobactericidal effect. Antimicrob Agents Chemother. 2014;58(10):5766–74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Britode Souza VN et al. Analysis of apoptosis and Bcl-2 expression in polar forms of leprosy. FEMS Immunol Med Microbiol. 2010;60(3):270–4.

    Article  CAS  Google Scholar 

  33. Hasan Z. M. leprae inhibits apoptosis in THP-1 cells by downregulation of Bad and Bak and upregulation of Mcl-1 gene expression. BMC Microbiol. 2006;6:78.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hernandez MO et al. Induction of apoptosis in monocytes by Mycobacterium leprae in vitro: a possible role for tumour necrosis factor-alpha. Immunology. 2003;109(1):156–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cogen AL et al. Human beta-defensin 3 is up-regulated in cutaneous leprosy type 1 reactions. PLoS Negl Trop Dis. 2012;6(11):e1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boniotto M et al. Human beta-defensin 2 induces a vigorous cytokine response in peripheral blood mononuclear cells. Antimicrob Agents Chemother. 2006;50(4):1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim BH et al. IFN-inducible GTPases in host cell defense. Cell Host Microbe. 2012;12(4):432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang D et al. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages. Inflammation. 2014;37(4):1028–34.

    Article  CAS  PubMed  Google Scholar 

  39. Lee DJ et al. Integrated pathways for neutrophil recruitment and inflammation in leprosy. J Infect Dis. 2010;201(4):558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rambukkana A et al. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science. 1998;282(5396):2076–9. This paper shows a significant advancement in our understanding of how M. leprae binds to and infects Schwann cells.

  41. Kumar V et al. High resolution structural changes of Schwann cell and endothelial cells in peripheral nerves across leprosy spectrum. Ultrastruct Pathol. 2014;38(2):86–92.

    Article  CAS  PubMed  Google Scholar 

  42. Tapinos N, Rambukkana A. Insights into regulation of human Schwann cell proliferation by Erk1/2 via a MEK-independent and p56Lck-dependent pathway from leprosy bacilli. Proc Natl Acad Sci U S A. 2005;102(26):9188–93. This paper provides important insights into the roles of signaling pathways involved in Schwann cell proliferation in leprosy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy L. Phung.

Ethics declarations

Conflict of Interest

Mahmoud Bokhary and Thuy L. Phung declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Tropical Dermatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokhary, M., Phung, T.L. Molecular Pathogenesis of Leprosy. Curr Trop Med Rep 3, 127–130 (2016). https://doi.org/10.1007/s40475-016-0094-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-016-0094-y

Keywords

Navigation