Skip to main content
Log in

Network-Guided Transcranial Magnetic Stimulation for Depression

  • Neuromodulation (S Taylor, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

First, we will identify candidate predictive biomarkers of antidepressant response of TMS based on the neuroimaging literature. Next, we will review the effects of TMS on networks involved in depression. Finally, we will discuss ways in which our current understanding of network engagement by TMS may be used to optimize its antidepressant effect.

Recent Findings

The past few years has seen significant interest in the antidepressant mechanisms of TMS. Studies using functional neuroimaging and neurochemical imaging have demonstrated engagement of networks known to be important in depression. Current evidence supports a model whereby TMS normalizes network function gradually over the course of several treatments. This may, in turn, mediate its antidepressant effect.

Summary

One strategy to optimize the antidepressant effect of TMS is to more precisely target networks relevant in depression. We propose methods to achieve this using functional and neurochemical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. George MS, Wassermann EM. Rapid-rate transcranial magnetic stimulation and ECT. Convuls Ther. 1994;10:251–4. discussion 255–8

    CAS  PubMed  Google Scholar 

  2. Buchsbaum MS, Wu J, DeLisi LE, Holcomb H, Kessler R, Johnson J, King AC, Hazlett E, Langston K, Post RM. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord. 1986;10:137–52.

    Article  CAS  PubMed  Google Scholar 

  3. Martinot JL, Hardy P, Feline A, Huret JD, Mazoyer B, Attar-Levy D, Pappata S, Syrota A. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatr. 1990;147:1313–7.

    Article  CAS  PubMed  Google Scholar 

  4. Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry J Ment Sci. 1989;154:170–82.

    Article  CAS  Google Scholar 

  5. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 1995;6:1853–6.

    Article  CAS  PubMed  Google Scholar 

  6. Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348:233–7.

    Article  CAS  PubMed  Google Scholar 

  7. George MS, Wassermann EM, Kimbrell TA, Little JT, Williams WE, Danielson AL, Greenberg BD, Hallett M, Post RM. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial. Am J Psychiatr. 1997;154:1752–6.

    Article  CAS  PubMed  Google Scholar 

  8. • O’Reardon JP, Solvason HB, Janicak PG, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16. Multisite, double-blind, sham-controlled study showing that rTMS is superior to sham in the treatment of major depressive disorder

    Article  PubMed  Google Scholar 

  9. • George MS, Lisanby SH, Avery D, et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010;67:507–16. Replicated findings of the study of O'Reardon, et al [8]

    Article  PubMed  Google Scholar 

  10. Slotema CW, Blom JD, Hoek HW, Sommer IEC. Should We expand the toolbox of psychiatric treatment methods to include repetitive transcranial magnetic stimulation (rTMS)? J Clin Psychiatry. 2010;71:873–84.

    Article  PubMed  Google Scholar 

  11. Schutter DJLG. Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis. Psychol Med. 2009;39:65–75.

    Article  CAS  PubMed  Google Scholar 

  12. Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychol Med. 2014;44:225–39.

    Article  CAS  PubMed  Google Scholar 

  13. Kedzior KK, Reitz SK, Azorina V, Loo C. Durability of the antidepressant effect of the high-frequency repetitive transcranial magnetic stimulation (rTMS) in the absence of maintenance treatment in major depression: a systematic review and meta-analysis of double-blind, randomized, sham-controlled trials. Depress Anxiety. 2015;32:193–203.

    Article  PubMed  Google Scholar 

  14. Speer AM, Kimbrell TA, Wassermann EMD, Repella J, Willis MW, Herscovitch P, Post RM. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry. 2000;48:1133–41.

    Article  CAS  PubMed  Google Scholar 

  15. Speer AM, Benson BE, Kimbrell TK, Wassermann EM, Willis MW, Herscovitch P, Post RM. Opposite effects of high and low frequency rTMS on mood in depressed patients: relationship to baseline cerebral activity on PET. J Affect Disord. 2009;115:386–94.

    Article  CAS  PubMed  Google Scholar 

  16. Teneback CC, Nahas Z, Speer AM, Molloy M, Stallings LE, Spicer KM, Risch SC, George MS. Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. The Journal of neuropsychiatry and clinical neurosciences. 1999;11:426–35.

    CAS  PubMed  Google Scholar 

  17. Weiduschat N, Dubin MJ. Prefrontal cortical blood flow predicts response of depression to rTMS. J Affect Disord. 2013;150:699–702.

    Article  PubMed  Google Scholar 

  18. • Noda Y, Silverstein WK, Barr MS, et al. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol Med. 2015;45:3411–32. Excellent review of the neurobiological mechanisms of treatment response to TMS in patients with depression. The authors present evidence from neurochemistry, genetics, neurophysiology and neuroimaging

    Article  CAS  PubMed  Google Scholar 

  19. • Silverstein WK, Noda Y, Barr MS, et al. Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: a systematic review. Depression and Anxiety. 2015;32:871–91. Comprehensive review of the neurobiological predictors of treatment response to TMS in patients with depression. Evidence from neurochemistry, genetics, neurophysiology and neuroimaging is presented

    Article  PubMed  Google Scholar 

  20. • Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37. Early study demonstrating increased functional connectivity in the default mode network is a biomarker for the depressed state

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME. The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A. 2009;106:1942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A. 2010;107:11020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.

    Article  CAS  PubMed  Google Scholar 

  24. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol Psychiatry. 2015;78:224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. • Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47. Authoritative review by one of the pioneers of the study of the default mode network

    Article  CAS  PubMed  Google Scholar 

  26. Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W, Yao S. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry. 2012;71:611–7.

    Article  PubMed  Google Scholar 

  27. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord. 2012;139:56–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Perrin JS, Merz S, Bennett DM, Currie J, Steele DJ, Reid IC, Schwarzbauer C. Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci. 2012;109:5464–8. Seminal study demonstrating that electroconvulsive therapy reduces elevated functional connectivity of frontal cortical areas in patients with depression

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Wingen GA, Tendolkar I, Urner M, van Marle HJ, Denys D, Verkes R-J, Fernández G. Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest. NeuroImage. 2014;88:47–53.

    Article  PubMed  Google Scholar 

  30. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.

    Article  CAS  PubMed  Google Scholar 

  31. •• Salomons TV, Dunlop K, Kennedy SH, Flint A, Geraci J, Giacobbe P, Downar J. Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology. 2013;39:1–11. First study to correlate baseline functional connectivity with treatment response and to demonstrate changes in functional connectivity in response to TMS for depression. This study used a dorsomedial prefrontal cortex (DMPFC) stimulation site

    Google Scholar 

  32. •• Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, Voss HU, Casey BJ, Etkin A, Dubin MJ. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry. 2014;76:517–26. Study demonstrating that elevated functional connectivity within the default mode network (DMN) and between the subgenual cingulate and cognitive executive network correlated with response of depression to TMS. This study also demonstrated normalization of functional connectivity after TMS

    Article  PubMed  PubMed Central  Google Scholar 

  33. •• Baeken C, Marinazzo D, Wu G-R, Van Schuerbeek P, De Mey J, Marchetti I, Vanderhasselt M-A, Remue J, Luypaert R, De Raedt R. Accelerated HF-rTMS in treatment-resistant unipolar depression: insights from subgenual anterior cingulate functional connectivity. The World Journal of Biological Psychiatry. 2014;15:286–97. Sham-controlled study showing that elevated functional connectivity between the DLPFC target site and the subgenual cingulate correlated with treatment response of depression to TMS. This pattern showed normalization specifically in responders; no effects were observed in non-responders

    Article  PubMed  Google Scholar 

  34. Mayberg HS, Brannan SK, Mahurin RK, et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8:1057–61.

    Article  CAS  PubMed  Google Scholar 

  35. Fu CHY, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.

    Article  CAS  PubMed  Google Scholar 

  36. •• Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72:595–603. Meta-analysis across several studies of high-frequency TMS stimulating the left DLPFC for depression. Analyzed studies used varied definitions of the DLPFC. The authors demonstrate that better treatment outcome correlated with higher functional connectivity between the stimulation site and the sgACC

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fox MD, Liu H, Pascual-Leone Á. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage. 2013;66:1–10.

    Article  Google Scholar 

  38. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  39. • Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A. 2014;111:E4367–75. Comparative review demonstrating that, for many psychiatric and neurologic illnesses, effective targets for deep brain stimulation and effective targets for noninvasive brain stimulation are both within the same network. This suggests that targeting the relevant network is most important in treating neuropsychiatric illness with brain stimulation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry. 2015;77:223–35.

    Article  PubMed  Google Scholar 

  41. Anderson RJ, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2016;127:3394–405.

    Article  Google Scholar 

  42. Deng Z-D, Davis S, Asturias G, Glidewell M, Liston C, Dubin MJ. Effect of repetitive transcranial magnetic stimulation on the structural connectome in patients with major depression. 6th International Conference on Transcranial Brain Stimulation. 2016

  43. Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis. 2013;52:49–65.

    Article  CAS  PubMed  Google Scholar 

  44. Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:54–63.

    Article  CAS  Google Scholar 

  45. Argyelán M, Szabó Z, Kanyó B, Tanács A, Kovács Z, Janka Z, Pávics L. Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J Affect Disord. 2005;89:115–23.

    Article  PubMed  Google Scholar 

  46. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21:1–4.

    Google Scholar 

  47. Pogarell O, Koch W, Popperl G, Tatsch K, Jakob F, Zwanzger P, Mulert C, Rupprecht R, Moller H, Hegerl U. Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J Psychiatr Res. 2006;40:307–14.

    Article  PubMed  Google Scholar 

  48. Pogarell O, Koch W, Pöpperl G, et al. Acute prefrontal rTMS increases striatal dopamine to a similar degree as d-amphetamine. Psychiatry Res Neuroimaging. 2007;156:251–5.

    Article  CAS  PubMed  Google Scholar 

  49. Kuroda Y, Motohashi N, Ito H, Ito S, Takano A, Nishikawa T, Suhara T. Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression. J Affect Disord. 2006;95:35–42.

    Article  CAS  PubMed  Google Scholar 

  50. Kuroda Y, Motohashi N, Ito H, Ito S, Takano A, Takahashi H, Nishikawa T, Suhara T. Chronic repetitive transcranial magnetic stimulation failed to change dopamine synthesis rate: preliminary L-[β-11C]DOPA positron emission tomography study in patients with depression. Psychiatry Clin Neurosci. 2010;64:659–62.

    Article  PubMed  Google Scholar 

  51. Miniussi C, Bonato C, Bignotti S, Gazzoli A, Gennarelli M, Pasqualetti P, Tura GB, Ventriglia M, Rossini PM. Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression? Clin Neurophysiol. 2005;116:1062–71.

    Article  CAS  PubMed  Google Scholar 

  52. Kanno M, Matsumoto M, Togashi H, Yoshioka M, Mano Y. Effects of acute repetitive transcranial magnetic stimulation on dopamine release in the rat dorsolateral striatum. J Neurol Sci. 2004;217:73–81.

    Article  CAS  PubMed  Google Scholar 

  53. Zangen A, Hyodo K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. Neuroreport. 2002;13:2401–5.

    Article  CAS  PubMed  Google Scholar 

  54. Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S, Busto UE. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry. 2005;62:1228–36.

    Article  PubMed  Google Scholar 

  55. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Avissar M, Powell F, Casey BJ, Liston C, Dubin M. TMS over the left dorsolateral prefrontal cortex modulates frontostriatal connectivity in depression. Journal of ECT. 2015;31:E33.

    Google Scholar 

  57. Sibon I, Strafella AP, Gravel P, Ko JH, Booij L, Soucy JP, Leyton M, Diksic M, Benkelfat C. Acute prefrontal cortex TMS in healthy volunteers: effects on brain 11C-αMtrp trapping. NeuroImage. 2007;34:1658–64.

    Article  CAS  PubMed  Google Scholar 

  58. Juckel G, Mendlin A, Jacobs BL. Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: implications for electroconvulsive therapy and transcranial magnetic stimulation in depression. Neuropsychopharmacology. 1999;21:391–8.

    Article  CAS  PubMed  Google Scholar 

  59. Levkovitz Y, Grisaru N, Segal M. Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus. Neuropsychopharmacology. 2001;24:608–16.

    Article  CAS  PubMed  Google Scholar 

  60. Sanacora G, Mason GF, Rothman DL, et al. REduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999;56:1043–7.

    Article  CAS  PubMed  Google Scholar 

  61. Croarkin PE, Levinson AJ, Daskalakis ZJ. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev. 2011;35:818–25.

    Article  CAS  PubMed  Google Scholar 

  62. Gabbay V, Mao X, Klein RG, Ely BA, Babb JS, Panzer AM, Alonso CM, Shungu DC. Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents: relationship to anhedonia. Arch Gen Psychiatry. 2012;69:139–49.

    Article  CAS  PubMed  Google Scholar 

  63. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64:193–200.

    Article  CAS  PubMed  Google Scholar 

  64. Maciag D, Hughes J, O'Dwyer G, Pride Y, Stockmeier CA, Sanacora G, Rajkowska G. Reduced density of Calbindin Immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry. 2010;67:465–70.

    Article  CAS  PubMed  Google Scholar 

  65. • Levinson AJ, Fitzgerald PB, Favalli G, Blumberger DM, Daigle M, Daskalakis ZJ. Evidence of cortical inhibitory deficits in major depressive disorder. Biol Psychiatry. 2010;67:458–64. The authors present compelling evidence of dysregulated cortical inhibition in major depressive disorder using TMS-based neurophysiologic measures

    Article  CAS  PubMed  Google Scholar 

  66. Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci. 2007;10:1515–7.

    Article  CAS  PubMed  Google Scholar 

  68. •• Northoff G, Sibille E. Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol Psychiatry. 2014;19:966–77. Excellent summary of evidence and presentation of a model connecting GABA dysregulation, default mode network changes and shift from external to internal focus in individuals with depression

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Northoff G. How do resting state changes in depression translate into psychopathological symptoms? From ‘spatiotemporal correspondence’ to ‘spatiotemporal psychopathology’. Current Opinion in Psychiatry. 2016;29:18–24.

    Article  PubMed  Google Scholar 

  70. Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB, Berman RM, Krystal JH. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatr. 2003;160:577–9.

    Article  PubMed  Google Scholar 

  71. Sanacora G, Mason GF, Rothman DL, Krystal JH. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatr. 2002;159:663–5.

    Article  PubMed  Google Scholar 

  72. Milak MS, Proper CJ, Mulhern ST, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry. 2016;21:320–7.

    Article  CAS  PubMed  Google Scholar 

  73. Dubin MJ, Mao X, Banerjee S, Goodman Z, Lapidus KAB, Kang G, Liston C, Shungu DC. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J Psychiatry Neurosci. 2016;41:E37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology. 2012;62:63–77.

    Article  CAS  PubMed  Google Scholar 

  75. Michael N, Gosling M, Reutemann M, Kersting A, Heindel W, Arolt V, Pfleiderer B. Metabolic changes after repetitive transcranial magnetic stimulation (rTMS) of the left prefrontal cortex: a sham-controlled proton magnetic resonance spectroscopy (1H MRS) study of healthy brain. Eur J Neurosci. 2003;17:2462–8.

    Article  PubMed  Google Scholar 

  76. Croarkin PE, Nakonezny PA, Wall CA, Murphy LL, Sampson SM, Frye MA, Port JD. Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents. Psychiatry Res Neuroimaging. 2016;247:25–33.

    Article  PubMed  Google Scholar 

  77. Tremblay S, Beaulé V, Proulx S, de Beaumont L, Marjanska M, Doyon J, Pascual-Leone A, Lassonde M, Theoret H. Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate + glutamine. J Neurophysiol. 2013;109:1343–9.

    Article  CAS  PubMed  Google Scholar 

  78. Levkovitz Y, Harel E, Roth Y, Braw Y, Most D, Katz L, Sheer A, Gersner R, PhDb ZA. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimulation. 2009;2:188–200.

    Article  PubMed  Google Scholar 

  79. Levkovitz Y, Isserles M, Padberg F, et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial. World Psychiatry. 2015;14:64–73.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–7.

    Article  CAS  PubMed  Google Scholar 

  81. Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS One. 2012;7:e32508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Klimesch W, Sauseng P, Gerloff C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci. 2003;17:1129–33.

    Article  PubMed  Google Scholar 

  83. Luber B, Kinnunen LH, Rakitin BC, Ellsasser R, Stern Y, Lisanby SH. Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency- and time-dependent effects. Brain Res. 2007;1128:120–9.

    Article  CAS  PubMed  Google Scholar 

  84. Leuchter AF, Cook IA, Jin Y, Phillips B. The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder. Front Hum Neurosci. 2013;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Leuchter AF, Hunter AM, Krantz DE, Cook IA. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments. Ann N Y Acad Sci. 2015;1344:78–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leuchter AF, Cook IA, Feifel D, et al. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression. Brain Stimulation. 2015;8:787–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Dubin.

Ethics declarations

Conflict of Interest

Dr. Marc J. Dubin reports materials transfer to complete studies of TMS for depression from Neuronetics, Inc., grant funding for a clinical trial of Low Field Magnetic Stimulation for Major Depression from TAL Medical, Inc., outside the submitted work. Dr. Conor Liston, Dr. Michael A. Avissar, Dr. Irena Ilieva, and Dr. Faith M. Gunning declare that they have no conflicts of interest. Dr. Faith Gunning is supported by NIMH grant R01MH097735 PI.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuromodulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubin, M.J., Liston, C., Avissar, M.A. et al. Network-Guided Transcranial Magnetic Stimulation for Depression. Curr Behav Neurosci Rep 4, 70–77 (2017). https://doi.org/10.1007/s40473-017-0108-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0108-7

Keywords

Navigation