Skip to main content
Log in

Study on the liquid metal flow field in FC-mold of slab continuous casting

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

The flow pattern and the velocity distribution of a liquid metal in the flow control mold (FC-mold) were investigated with a mercury model by analogy to the molten steel during continuous casting. The velocity measurement was conducted by the ultrasonic Doppler velocimeter (UDV) under various magnetic distributions and flux densities. The impingement intensity and the scouring intensity of the liquid metal to the narrow wall of the mold were calculated based on the measured data, and the influence of the magnetic flux density on the liquid metal flow in the mold was analyzed. The results showed that the surface of the liquid metal became more active when only the lower magnet was assembled, and the surface fluctuation was suppressed when further applying the upper magnetic field. It was indicated that when the upper and lower magnetic flux densities were 0.18 T and 0.5 T, respectively, the optimum conditions could be obtained, under which the free surface fluctuation could be suppressed, and a flow recirculation could rapidly form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Idogawa A, Sugizawa M, Takeuchi S et al (1993) Control of molten steel flow in continuous casting mold by two static magnetic fields imposed on whole width. Mater Sci Eng A A173:293

    Article  Google Scholar 

  2. Kariya K, Kitano Y, Kuga M et al (1994) Development of flow control mold for high speed casting using static magnetic fields. In: Steelmaking conference proceedings on iron & steel society, Warrendale, PA, pp 53–58

  3. Hwang Y, Cha P, Nam H et al (1997) Numerical analysis of the influences of operational parameters on the fluid flow and meniscus shape in slab caster with EMBR. ISIJ Int 37(7):659–667

    Article  Google Scholar 

  4. Lehman AF, Tallback GR, Kollberg SG et al (1994) Fluid flow control in continuous casting using various configuration of static magnetic fields. In: International symposium on electromagnetic processing materials, ISIJ, Tokyo, pp 372–397

  5. Nagai J, Suzuki K, Kojima S et al (1984) Steel flow control in a high-speed continuous slab caster using an electromagnetic brake. Iron Steel Eng 61:41–47

    Google Scholar 

  6. Hanada H (1999) Effect of density difference of molten steels on the mixing in strand pool in the sequential casting of different steel grades with a level DC magnetic field. CAMP-ISIJ 12:830–842

    MathSciNet  Google Scholar 

  7. Zeze M, Tanaka H, Takeuchi E et al (1996) Continuous casting of clad steel slab with level magnetic field brake. In: Steelmaking conference proceedings, Pittsburgh, pp 225–230

  8. Thomas BG, Zhang LF (2001) Mathematical modeling of fluid flow in continuous casting. ISIJ Int 41:1181–1193

    Article  Google Scholar 

  9. Gupta D, Chakraborty S, Lahiri AK (1997) Asymmetry and oscillation of the fluid flow pattern in a continuous casting mould: a water model study. ISIJ Int 37:654–658

    Article  Google Scholar 

  10. Takatani K, Tanizawa Y, Mizukami H et al (2001) Mathematical model for transient fluid flow in a continuous casting mold. ISIJ Int 41:1252–1261

    Article  Google Scholar 

  11. Takatani K, Nakaii K, Kasai N et al (1989) Analysis of heat transfer flow in the continuous casting mold with electromagnetic brake. ISIJ Int 29:l063–1068

    Article  Google Scholar 

  12. Moon KH, Shin HK, Kim BJ et al (1996) Flow control of molten steel by electromagnetic brake in the continuous casting mold. ISIJ Int 36:201–203

    Article  Google Scholar 

  13. Chaudhary R, Thomas BG, Vanka SP (2012) Effect of electromagnetic ruler braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations. Metall Mater Trans B 43B:532–553

    Article  Google Scholar 

  14. Najjar FM, Thomas BG, Hershey DE (1995) Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting. Metall Mater Trans B 26:749–765

    Article  Google Scholar 

  15. Honeyands T, Herbertson J (1995) Flow dynamics in thin slab caster moulds. Steel Res 66:287–293

    Google Scholar 

  16. Odenthal HJ, Lemanowicz I, Gorissen R et al (2002) Simulation of the submerged energy nozzle-mold water model system using laser-optical and computational fluid dynamics methods. Metall Mater Trans B 33:163–172

    Article  Google Scholar 

  17. Singh R, Thomas BG, Vanka SP (2013) Effects of a magnetic field on turbulent flow in the mold region of a steel caster. Metall Mater Trans B 44:1201–1221

    Article  Google Scholar 

  18. Singh R, Thomas BG, Vanka SP (2014) Large eddy simulations of double-ruler electromagnetic field effect on transient flow during continuous casting. Metall Mater Trans B 45:1098–1115

    Article  Google Scholar 

  19. Cho SM, Kim SH, Thomas BG (2014) Transient fluid flow during steady continuous casting of steel slabs. Part I. Measurements and modeling of two-phase flow. Part II. Effect of double-ruler electro-magnetic braking. ISIJ Int 54:845–854 and 855–864

  20. Timmel K, Miao X, Lucas D et al (2010) Experimental and numerical modelling of the steel flow in a continuous casting mould under the influence of a transverse DC magnetic field. Magnetohydrodynamics 46:437–448

    Google Scholar 

  21. Timmel K, Eckert S, Gerberth G (2011) Experimental investigation of the flow in a continuous-casting mold under the influence of a transverse, direct current magnetic field. Metall Mater Trans B 42B:68–80

    Article  Google Scholar 

  22. Miao XC, Timmel K, Lucas D et al (2012) Effect of an electromagnetic brake on the turbulent melt flow in a continuous-casting mold. Metall Mater Trans B 43B:954–972

    Article  Google Scholar 

  23. Yu Z, Zhang ZQ, Ren ZM et al (2010) Study on the fluid flow in slab continuous casting mold with electromagnetic brake. Acta Metall Sin 46:1275–1280

    Article  Google Scholar 

  24. Signal Processing SA (2008) User’s manual for DOP2000 Model 2125/2032. Software: 4.02 Revision: 2

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 50911130365) and the National Key Basic Program of China (973 Program) (Grant No. 2011CB610404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZQ., Yu, JB., Ren, ZM. et al. Study on the liquid metal flow field in FC-mold of slab continuous casting. Adv. Manuf. 3, 212–220 (2015). https://doi.org/10.1007/s40436-015-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-015-0117-2

Keywords

Navigation