Skip to main content
Log in

A scheme for study of linear stochastic time-delay dynamical systems under continuous and impulsive fluctuations

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The paper deals with linear stochastic systems perturbed by both continuous and jump random noises. A presence of the lasts leads to the fact that at random times the state vector of the system receives random finite increments. But compound jump processes may have different pulse distributions describing time intervals between the impulses and their magnitudes that brings to a more complex time history of the systems than in the case of continuous noises only. We consider a problem of calculation of the first-order moment functions and the second-order central moment functions (hereinafter referred to as the first moment functions) for the state vectors of linear stochastic difference-differential systems excited by random continuous Wiener and jump Poisson processes. The technique combining the classic method of steps and a scheme of state space extension is used to derive a sequence of jump-diffusion stochastic differential equations (DEs) without delays satisfied by extended state vectors and then a chain of ordinary DEs’ systems governing the first moment functions. A usage of vector-matrix notation allows to obtain this chain in a form that is suitable for a practical computer program implementation. Finally an example of analysis of a stochastic SDOF system demonstrates an application of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soong TT (1973) Random differential equations in science and engineering. Academic Press, New York

    MATH  Google Scholar 

  2. Sobczyk K (1991) Stochastic differential equations: with applications to physics and engineering. Springer, Dordrecht

    Book  MATH  Google Scholar 

  3. Sun JQ (2006) Stochastic dynamics and control. Elsevier Science, Oxford

    Book  Google Scholar 

  4. Luan X, Liu F, Shi P (2010) Neural network based stochastic optimal control for nonlinear Markov jump systems. Int J Innov Comput Inf Control 6(8):3715–3723

    Google Scholar 

  5. Lin YK (1963) Application of non-stationary shot noise in the study of system response to a class of non-stationary excitations. Trans ASME J Appl Mech 30:555–558

    Article  MATH  Google Scholar 

  6. Roberts JB (1966) On the response of a simple oscillator to random impulses. J Sound Vib 4(1):51–61

    Article  Google Scholar 

  7. Malanin VV, Poloskov IE (1983) About one problem of the reability theory for dynamical systems. In: Problems of mechanics of controlled motion: nonlinear dynamical systems, Perm, pp. 88–93 (in Russian)

  8. Snyder DL, Miller MI (1991) Random point processes in time and space, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  9. Iwankiewicz R (1995) Dynamical mechanical systems under random impulses. World Scientific, Singapore

    MATH  Google Scholar 

  10. Iwankiewicz R, Nielsen SRK (1999) Vibration theory, Vol. 4, Advanced methods in stochastic dynamics of non-linear systems, Aalborg University Press, Denmark

  11. Mahmoud MS, Shi P (2003) Methodologies for control of jump time-delay systems. Kluwer, New York

    MATH  Google Scholar 

  12. Situ R (2005) Theory of stochastic differential equations with jumps and applications: mathematical and analytical techniques with applications to engineering. Springer, New York

    MATH  Google Scholar 

  13. Hanson FB (2007) Applied stochastic processes and control for jump-diffusions: modeling, analysis, and computation. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  14. Cont R, Tankov P (2009) Financial modelling with jump processes, 2nd edn. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  15. Platen E, Bruti-Liberati N (2010) Numerical solution of stochastic differential equations with jumps in finance. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Iwankiewicz R, Nielsen SRK (2000) Solution techniques for pulse problems in non-linear stochastic dynamics. Prob Eng Mech 15(1):25–36

    Article  Google Scholar 

  17. Norin NV (1996) The extended stochastic integral in linear spaces with differentiable measures and related topics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  18. Øksendal B, Sulem-Bialobroda A (2007) Applied stochastic control of jump diffusions, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Iwankiewicz R (2009) Application of stochastic point processes in mechanics. PAMM 9(1):559–562

    Article  Google Scholar 

  20. Roberts JB (1972) System response to random impulses. J Sound Vib 24(1):23–34

    Article  MATH  Google Scholar 

  21. Tylikowski A, Marowski W (1986) Vibration of a non-linear single-degree-of-freedom system due to Poissonian impulse excitation. Int J Non-Linear Mech 21(3):229–238

    Article  MathSciNet  MATH  Google Scholar 

  22. Śniady P (1989) Dynamic response of linear structures to a random stream of pulses. J Sound Vib 131(1):91–102

    Article  Google Scholar 

  23. Iwankiewicz R, Nielsen SRK, Thoft-Christensen P (1990) Dynamic response of non-linear systems to Poisson-distributed pulse trains: Markov approach. Struct Safety 8(1–4):223–238

    Article  Google Scholar 

  24. Driver RD (1977) Ordinary and delay differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Hale J (1977) Theory of functional differential equations. Springer, New York 1977

    Book  MATH  Google Scholar 

  26. Stépán G (1989) Retarded dynamical systems: stability and characteristic functions. Longman Scientific & Technical, Harlow; Wiley, New York

    MATH  Google Scholar 

  27. Kuang Y (1993) Delay differential equations with applications in population dynamics. Academic Press, Boston

    MATH  Google Scholar 

  28. Erneux T (2009) Applied delay differential equations. Springer, New York

    MATH  Google Scholar 

  29. Insperger T, Stépán G (2011) Semi-discretization for time-delay systems. Stability and engineering applications. Springer, New York

    Book  MATH  Google Scholar 

  30. Rubanik VP (1969) Vibrations of Quasi-linear systems with delay. Nauka, Moscow (in Russian)

    Google Scholar 

  31. Tsar’kov EF (1989) Random fluctuations of functional differential equations. Zinatne, Riga (in Russian)

    MATH  Google Scholar 

  32. Rubanik VP (1985) Vibrations of compound quasi-linear systems with delay. Universitetskoe, Minsk (in Russian)

    MATH  Google Scholar 

  33. Kushner HJ (2008) Numerical methods for controlled stochastic delay systems. Birkhauser, Boston

    Book  MATH  Google Scholar 

  34. Krasovskiy NN, Lidskiy EA (1961) Analitical designing of regulators for systems with random properties. Autom Remote Control 22(9):1145–1150 (in Russian)

    Google Scholar 

  35. Malek-Zavarei M, Jamshidi M (1987) Time-delay systems: analysis, optimation and application. North-Holland, Amsterdam

    MATH  Google Scholar 

  36. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  37. Milstein GN, Tretyakov MV (2004) Stochastic numerics for mathematical physics. Springer, Berlin

    Book  MATH  Google Scholar 

  38. Kuznetsov DF (2010) Stochastic differental equations: theory and practice of numerical solution. Polytechnical University Press, Saint Petersburg (in Russian)

    Google Scholar 

  39. Higham DJ, Kloeden PE (2005) Numerical methods for nonlinear stochastic differential equations with jumps. Numer Math 101(1):101–119

    Article  MathSciNet  MATH  Google Scholar 

  40. Higham DJ, Kloeden PE (2006) Convergence and stability of implicit methods for jump-diffusion systems. Int J Numer Anal Model 3(2):125–140

    MathSciNet  MATH  Google Scholar 

  41. Wang X, Gan S (2010) Compensated stochastic theta methods for stochastic differential equations with jumps. Appl Numer Math 60(9):877–887

    Article  MathSciNet  MATH  Google Scholar 

  42. Buckwar E, Riedler MG (2011) Runge–Kutta methods for jump-diffusion differential equations. J Comput Appl Math 236(6):1155–1182

    Article  MathSciNet  MATH  Google Scholar 

  43. Mordecki E, Szepessy A, Tempone R, Zouraris GE (2008) Adaptive weak approximation of diffusions with jumps. SIAM J Numer Anal 46(4):1732–1768

    Article  MathSciNet  MATH  Google Scholar 

  44. Hu L, Gan S (2011) Convergence and stability of the balanced methods for stochastic differential equations with jumps. Int J Comput Math 88(10):2089–2108

    Article  MathSciNet  MATH  Google Scholar 

  45. Higham DJ, Kloeden PE (2007) Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems. J Comput Appl Math 205(2):949–956

    Article  MathSciNet  MATH  Google Scholar 

  46. Riedler M (2008) Numerical methods for the approximation of strong solutions of stochastic differential equations of jump type. Diploma Thesis. Vienna University of Technology, p 129

  47. Ding X-H, Ma Q, Zhang L (2010) Convergence and stability of the split-step \(\theta \)-method for stochastic differential equations. Comput Math Appl 60(5):1310–1321

    Article  MathSciNet  MATH  Google Scholar 

  48. Kashima K, Kawai R (2011) An optimization approach to weak approximation of stochastic differential equations with jumps. Appl Numer Math 61(5):641–650

    Article  MathSciNet  MATH  Google Scholar 

  49. Delong L (2013) Backward stochastic differential equations with jumps and their actuarial and financial applications. BSDEs with Jumps. Springer, London

    Book  MATH  Google Scholar 

  50. Hu S-LJ (1997) Response cumulant equations for dynamic systems under delta-correlated processes. ASCE J Eng Mech 123(2):174–177

    Article  Google Scholar 

  51. Iwankiewicz R, Nielsen SRK (1997) Analytical versus simulation solution techniques for pulse problems in non-linear stochastic dynamics. Dept. of Building Technology and Structural Engineering, Aalborg, p 14

  52. Marowski W (1989) Zastosowanie metody linearyzacji do analizy nieliniowego oscylatora poddanego działaniu przypadkowych impulsów. Mechanika Teoretyczna i Stosowana 27(1):65–85

    Google Scholar 

  53. Zeng Y, Zhu WQ (2010) Stochastic averaging of quasi-linear systems driven by Poisson white noise. Probab Eng Mech 25(1):99–107

    Article  Google Scholar 

  54. Proppe C (2002) Equivalent linearization of MDOF systems under external Poisson white noise excitation. Probab Eng Mech 17(4):393–399

    Article  Google Scholar 

  55. Grigoriu M (1995) Equivalent linearization for Poisson white noise input. Probab Eng Mech 10(1):45–51

    Article  Google Scholar 

  56. Cai GQ, Lin YK (1992) Response distribution of non-linear systems excited by non-Gaussian impulsive noise. Int J Non-Linear Mech 27(6):955–967

    Article  MathSciNet  MATH  Google Scholar 

  57. Roberts JB (1973) Distribution of the response of linear systems to poisson distributed random pulses. J Sound Vib 28(1):93–103

  58. Köylüoglu HU, Nielsen SRK, Cakmak AS (1995) Fast cell-to-cell mapping (path integration) for nonlinear white noise and Poisson driven systems. Struct Safety 17(3):151–165

    Article  Google Scholar 

  59. Köylüoglu HU, Nielsen SRK, Iwankiewicz R (1995) Response and reliability of Poisson driven systems by path integration. J Eng Mech 121(1):117–130

    Article  Google Scholar 

  60. Di Paola M, Santoro R (2008) Path integral solution for non-linear system enforced by Poisson white noise. Probab Eng Mech 23(2–3):164–169

    Article  Google Scholar 

  61. Köylüoglu HU, Nielsen SRK, Iwankiewicz R (1994) Reliability of non-linear oscillators subjected to Poisson driven impulses. J Sound Vib 176(1):19–33

    Article  MATH  Google Scholar 

  62. Vasta M, Luongo A (2004) Dynamic analysis of linear and nonlinear oscillations of a beam under axial and transversal random Poisson pulses. Nonlinear Dyn 36(2–4):421–435

    Article  MATH  Google Scholar 

  63. Baker CTH, Buckwar E (2000) Numerical analysis of explicit one-step methods for stochastic delay differential equations. LMS J Comput Math 3:315–335

    Article  MathSciNet  MATH  Google Scholar 

  64. Buckwar E (2000) Introduction to the numerical analysis of stochastic delay differential equations. J Comput Appl Math 125(1–2):297–307

    Article  MathSciNet  MATH  Google Scholar 

  65. Liu M, Cao W, Fan Z (2004) Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J Comput Appl Math 170(2):255–268

    Article  MathSciNet  MATH  Google Scholar 

  66. Buckwar E (2006) One-step approximations for stochastic functional differential equations. Appl Numer Math 56(5):667–681

  67. Ding X, Wu K, Liu M (2006) Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations. Int J Comput Math 83(10):753–763

    Article  MathSciNet  MATH  Google Scholar 

  68. Bao J, Mao X, Yuan C (Submitted on 18.06.2009) Rate of convergence for numerical solutions to SFDEs with jumps. arXiv:0906.3455 [math.PR]

  69. Zhang H, Gan S, Hu L (2009) The split-step backward Euler method for linear stochastic delay differential equations. J Comput Appl Math 225(2):558–568

    Article  MathSciNet  MATH  Google Scholar 

  70. Hu P, Huang C (2011) Stability of stochastic \(\varTheta \)-methods for stochastic delay integro-differential equations. Int J Comput Math 88(7):1417–1429

    Article  MathSciNet  MATH  Google Scholar 

  71. Wang W, Chen Y (2011) Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations. Appl Numer Math 61(5):696–701

    Article  MathSciNet  MATH  Google Scholar 

  72. Baker CTH, Buchwar E (2005) Exponential stability in \(p\)-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations. J Comput Appl Math 184(2):404–427

    Article  MathSciNet  MATH  Google Scholar 

  73. Jacob N, Wang Y, Yuan C (2009) Numerical solutions of stochastic differential delay equations with jumps. Stoch Anal Appl 27(4):825–853

    Article  MathSciNet  MATH  Google Scholar 

  74. Liu D (2011) Mean square stability of impulsive stochastic delay differential equations with Markovian switching and Poisson jumps. Int J Comput Math Sci 5(1):58–61

    MathSciNet  Google Scholar 

  75. Ronghua L, Zhaoguang C (2007) Convergence of numerical solution to stochastic delay differential equation with Poisson jump and Markovian switching. Appl Math Comput 184(2):451–463

    MathSciNet  MATH  Google Scholar 

  76. L-s Wang, Mei C, Xue H (2007) The semi-implicit Euler method for stochastic differential delay equations with jumps. Appl Math Comput 192(2):567–578

    MathSciNet  MATH  Google Scholar 

  77. Tan J, Wang H (2011) Mean-square stability of the Euler–Maruyama method for stochastic differential delay equations with jumps. Int J Comput Math 88(2):421–429

    MathSciNet  MATH  Google Scholar 

  78. Li Q, Gan S (2012) Stability of analytical and numerical solutions for nonlinear stochastic delay differential equations with jumps. Abstr Appl Anal 2012(831082):1–13

  79. Náprstek J, Král R (2008) Numerical solution of modified Fokker–Planck equation with Poissonian input. Eng Mech 17(3–4):251–268

    Google Scholar 

  80. Kozhevnikov AS, Rybakov KA (2010) About usage of spectral method for analysis of systems with random period of quantization in the Merton model. In: Modernization and innovation in aviation and aerospace (ed by Yu.Yu. Komarov), MAI-PRINT, Moscow, pp 299–305 (in Russian)

  81. Wojtkiewicz SF, Johnson EA, Bergman LA, Grigoriu M, Spencer BF Jr (1999) Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: solution of a forward generalized Kolmogorov equation by a spectral finite difference method. Comput Methods Appl Mech Eng 168(1–4):73–89

    Article  MATH  Google Scholar 

  82. Pirrotta A, Santoro R (2011) Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method. Probab Eng Mech 26(1):26–32

    Article  Google Scholar 

  83. Zhu HT, Er GK, Iu VP, Kou KP (2011) Probabilistic solution of nonlinear oscillators excited by combined Gaussian and Poisson white noises. J Sound Vib 330(12):2900–2909

    Article  Google Scholar 

  84. Lin H, Siqing G (2011) Stability of the Milstein method for stochastic differential equations with jumps. J Appl Math Inform 29(5–6):1311–1325

    MathSciNet  MATH  Google Scholar 

  85. Hu L, Gan S (2011) Mean-square convergence of drift-implicit one-step methods for neutral stochastic delay ifferential equations with jump diffusion. Discrete dynamics in dature and dociety. 2011: Article ID 917892, p 22

  86. Wei (2009) Convergence of numerical solutions for variable delay differential equations driven by Poisson random jump measure. Appl Math Comput 212(2):409–417

    MathSciNet  MATH  Google Scholar 

  87. Milošević M (2013) On the approximations of solutions to stochastic differential delay equations with Poisson random measure via Taylor series. Filomat 27(1):201–214

    Article  MathSciNet  MATH  Google Scholar 

  88. Jiang F, Shen Y, Liu L (2011) Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump. Commun Nonlinear Sci Numer Simul 16(2):798–804

    Article  MathSciNet  MATH  Google Scholar 

  89. Poloskov IE (2002) Phase space extension in the analysis of differential-difference systems with random input. Autom Remote Control 63(9):1426–1438

    Article  MathSciNet  MATH  Google Scholar 

  90. Poloskov IE (2005) Vehicle movement on road with random profile and allowing for delay. Russian Math Model 17(3):3–14 (in Russian)

    MATH  Google Scholar 

  91. Poloskov IE (2007) Symbolic-numeric algorithms for analysis of stochastic systems with different forms of aftereffect. PAMM 7(1):2080011–2080012

    Article  Google Scholar 

  92. Malanin VV, Poloskov IE (2011) About some schemes of study for systems with different forms of time aftereffect. In: Proc. of the IUTAM symp. on nonlinear stochastic dynamics and control. Springer, Dordrecht, pp 55–64

  93. Malanin VV, Poloskov IE (2013) On some methods for study of stochastic hereditary systems. Procedia IUTAM 6:60–68

    Article  Google Scholar 

  94. Tikhonov VI, Mironov MA (1977) The Markov processes. Sovetskoe radio, Moscow (in Russian)

    MATH  Google Scholar 

  95. Malanin VV, Poloskov IE (2005) Methods and practice of analysis of random processes in dynamical systems: Tutorial. Regular and chaotic dynamics, Izhevsk (in Russian)

Download references

Acknowledgments

This work is partly supported by Russian Foundation for Basic Research under Grant No. 14-01-96019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Poloskov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poloskov, I., Malanin, V. A scheme for study of linear stochastic time-delay dynamical systems under continuous and impulsive fluctuations. Int. J. Dynam. Control 4, 195–203 (2016). https://doi.org/10.1007/s40435-015-0172-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0172-3

Keywords

Navigation