Skip to main content
Log in

\(\fancyscript{H}_2\)-norm computation of a class of implicit fractional transfer functions: application to approximation by integer order models

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper focuses on the \(\fancyscript{H}_2\)-norm of a class of implicit fractional order transfer functions well suited to describe the input–output behaviour of diffusive systems. First, the analytical expression of the \(\fancyscript{H}_2\)-norm of this kind of transfer function is established. This result is then used to evaluate the quality of the integer order approximation of such an implicit fractional transfer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ross B (1977) The development of fractional calculus 1695–1900. Historia Mathematica 4(1):75–89. doi:10.1016/0315-0860(77)90039-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Miller K, Ross B (1993) An Introduction to the fractional calculus and fractional differential equations. Wiley, London

    MATH  Google Scholar 

  3. Sabatier J, Agrawal OP, Machado JAT (2007) Advances in fractional calculus: theoretical developments and applications in physics and engineering, 1st edn. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Oustaloup A (2014) Diversity and non-integer differentiation for system dynamics. Wiley, London

    Book  MATH  Google Scholar 

  5. Bertrand N, Sabatier J, Briat O, Vinassa JM (2010) Fractional non-linear modelling of ultracapacitors. Commun Nonlinear Sci Numer Simul 15(5):1327–1337. doi:10.1016/j.cnsns.2009.05.066

    Article  Google Scholar 

  6. Rodrigues S, Munichandraiah N, Shukla A (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87(1–2):12–20. doi:10.1016/S0378-7753(99)00351-1

    Article  Google Scholar 

  7. Battaglia JL, Cois O, Puigsegur L, Oustaloup A (2001) Solving an inverse heat conduction problem using a non-integer identified model. Int J Heat Mass Transf 44(14):2671–2680. doi:10.1016/S0017-9310(00)00310-0

    Article  MATH  Google Scholar 

  8. Sabatier J, Nguyen H, Farges C, Deletage JY, Moreau X, Guillemard F, Bavoux B (2011) Fractional models for thermal modeling and temperature estimation of a transistor junction. Adv Differ Equ 2011(1): doi:10.1155/2011/687363

  9. Ionescu C, Keyser RD, Sabatier J, Oustaloup A, Levron F (2011) Low frequency constant-phase behavior in the respiratory impedance. Biomed Signal Proces Control 6(2):197–208. doi:10.1016/j.bspc.2010.10.005 special Issue: The Advance of Signal Processing for Bioelectronics The Advance of Signal Processing for Bioelectronics

    Article  Google Scholar 

  10. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  MATH  Google Scholar 

  11. Matignon D, Depalle P, d’Andrea Novel B, Oustaloup A (1994) Viscothermal losses in wind instruments: a non-integer model. In: 10th international symposium on the mathematical theory of networks and systems (MTNS), Akademie Verlag, Berlin, Germany

  12. Liang S, Wei Y, Pan J, Gao Q, Wang Y (2014) Bounded real lemmas for factional order systems. Int J Autom compu. http://www.ijac.net/EN/abstract/article_1565.shtml

  13. Matignon D (1998) Stability properties for generalized fractional differential systems. Proc ESAIM 5:145–158

    Article  MathSciNet  MATH  Google Scholar 

  14. Petras I (2009) Stability of fractional-order systems with rational orders: a survey. Int J Theor Appl Fract Calc Appl Anal 12(3):269–298

    MathSciNet  MATH  Google Scholar 

  15. Sabatier J, Farges C (2012) On stability of commensurate fractional order systems. Int J Bifurc Chaos 22(4):1–8. doi:10.1142/S0218127412500848

    Article  MATH  Google Scholar 

  16. Sabatier J, Farges C, Trigeassou JC (2013) A stability test for non-commensurate fractional order systems. Syst Control Lett 62:739–746. doi:10.1016/j.sysconle.2013.04.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Farges C, Sabatier J, Moze M (2011) Fractional order polytopic systems: robust stability and stabilisation. Adv Differ Equ.doi:10.1186/1687-1847-2011-35

  18. Farges C, Fadiga L, Sabatier J (2013) H\(_\infty \) analysis and control of commensurate fractional order systems. Mechatronics 23(7):772–780. doi:10.1016/j.mechatronics.2013.06.005

    Article  MATH  Google Scholar 

  19. Matignon D (2010) Optimal control of fractional systems: a diffusive formulation. In: 19th international symposium on mathematical theory of networks and systems-MTNS 2010, Budapest, Hungary, http://oatao.univ-toulouse.fr/3886/

  20. Monje C, Chen Y, Vinagre B, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Padula F, Alcàntara S, Vilanova R, Visioli A (2013) Control of fractional linear systems. Automatica 49(7):2276–2280. doi:10.1016/j.automatica.2013.04.012

    Article  MathSciNet  Google Scholar 

  22. Tadeusz K (2014) Minimum energy control of fractional descriptor positive discrete-time linear systems. Int J Appl Math Comput Sci 24(4):735–743

    MathSciNet  MATH  Google Scholar 

  23. Malti R, Aoun M, Levron F, Oustaloup A (2011) Analytical computation of the \(\fancyscript {H}_2\)-norm of fractional commensurate transfer functions. Automatica 47(11):2425–2432. doi:10.1016/j.automatica.2011.08.029

    Article  MathSciNet  MATH  Google Scholar 

  24. Chevrié M, Malti R, Farges C, Sabatier J (2014) H2-norm of fractional transfer functions of implicit type of the first kind. In: 19th IFAC World Congress. Cape Town, South Africa, pp 2022–2027

  25. Malti R, Chevrié M, Farges C, Sabatier J (2014) \({L}_p\)-norm boundedness conditions of stable davidson-cole filters. In: International conference on fractional differentiation and its applications (ICFDA), Catania, Italy

  26. Caponetto R, Graziani S, Pappalardo F, Umana E, Xibilia M, Di Giamberardino P (2012) A scalable fractional order model for IPMC actuators. In: MATHMOD 2012–international conference on mathematical modelling, Vienna, Austria

  27. Tarasov V (2005) Fractional hydrodynamic equations for fractal media. Annal Phys 318:286–307

    Article  MathSciNet  MATH  Google Scholar 

  28. Sabatier J, Merveillaut M, Francisco JM, Guillemard F (2014) Lithium-ion batteries modelling involving fractional differentiation. J Power Sources 262C:36–43

    Article  Google Scholar 

  29. Melchior P, Pellet M, Abdelmoumen Y, Oustaloup A (2012) System identification of thermal transfers inside the lungs using fractional models. In: 7th Vienna international conference on mathematical modelling, Vienna, Austria, pp 571–576

  30. Polyanin A (2001) Handbook of linear partial differential equations for engineers and scientists. Chapman and Hall, London

    Book  MATH  Google Scholar 

  31. Gabano JD, Poinot T (2011) Fractional modelling and identification of thermal systems. Signal Proces Adv Fract Signals Syst 91(3):531–541. doi:10.1016/j.sigpro.2010.02.005

  32. Nguyen H (2013) Modélisation électrothermique de systèmes électriques électroniques automobile et pilotage de mosfet intelligents pour protéger les faisceaux, éviter les courts-circuits aggravés et diminuer la masse de câblage. PhD thesis, Université Bordeaux I

  33. Magin RL (2012) Fractional calculus in bioengineering: A tool to model complex dynamics. In: Carpathian control conference (ICCC), 2012 13th international, pp 464–469. doi:10.1109/CarpathianCC.2012.6228688

  34. Iftikhar MU, Riu D, Druart F, Rosini S, Bultel Y (2006) Dynamic modeling of proton exchange membrane fuel cell using non-integer derivatives. J Power Sources 160(2):1170–1182. doi:10.1016/j.jpowsour.2006.03.044 special issue including selected papers presented at the International Workshop on Molten Carbonate Fuel Cells and Related Science and Technology 2005 together with regular papers

    Article  Google Scholar 

  35. Gradshteyn I, Ryshik I (2007) Table of integrals, series, and products, 7th edn. Academic Press, London

    Google Scholar 

  36. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice-Hall, Englewood

    MATH  Google Scholar 

Download references

Acknowledgments

This work took place in the framework of the Open Lab Electronics and Systems for Automotive combining IMS laboratory and PSA Peugeot Citroën company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Farges.

Appendix

Appendix

  • According to formula 8.447.3 of [35], the modified Bessel function of the second kind of order \(\nu =0\) denoted \(\text {K}_0\), is defined as:

    $$\begin{aligned} \text {K}_0(z) = -\ln \frac{z}{2} \text {I}_0(z) + \sum _{k=0}^{\infty }{\frac{z^{2k}}{2^{2k}(k!)^2}\psi (k+1)}, \end{aligned}$$
    (28)

    where \(\text {I}_{0}(z)\) is the modified Bessel function of the first kind of order \(\nu =0\) (see (29)) and \(\psi (n+1)\) is the psi function also called digamma function (see (30)).

  • According to formula 8.447.1 of [35], the modified Bessel function of the first kind of order \(\nu =0\) is:

    $$\begin{aligned} \text {I}_{0}(z) = \sum _{k=0}^{\infty }{\frac{\left( \frac{z}{2}\right) ^{2k}}{(k!)^2}}. \end{aligned}$$
    (29)
  • According to formula 8.365.4 of [35], the modified Bessel function of the first kind of order \(\nu =0\) is:

    $$\begin{aligned} \psi (n+1)=-\mathcal {C} + \sum _{k=1}^{n-1}{\frac{1}{k}}, \end{aligned}$$
    (30)

    where \(\mathcal {C}\) is the Euler constant.

  • The following integral is reported in formula 3.387.6 of [35]:

    $$\begin{aligned} \int _{u}^\infty \!\!\!\!\!\!\left( x^2\!-\!u^2 \right) ^{\nu -1}\!e^{-\mu x}\text {d}x \!=\! \frac{\varGamma (\nu )}{\sqrt{\pi }}\!\!\left( \! \frac{2u}{\mu } \!\right) ^{\nu -\frac{1}{2}}\!\!\text {K}_{\nu -\frac{1}{2}}\!\left( u\mu \right) , \end{aligned}$$
    (31)

    where the conditions \(u>0\), \(\fancyscript{R}e ~ \mu > 0\) and \(\fancyscript{R}e ~ \nu > 0\) must hold. The definition of the Euler Gamma function \(\varGamma \) is reminded in (32).

  • According to formula 8.310.1 [35], the Euler Gamma function \(\varGamma \) is defined as:

    $$\begin{aligned} \varGamma (\nu )=\int _0^\infty e^{-x}x^{\nu -1}dx,~\nu >0. \end{aligned}$$
    (32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevrié, M., Sabatier, J., Farges, C. et al. \(\fancyscript{H}_2\)-norm computation of a class of implicit fractional transfer functions: application to approximation by integer order models. Int. J. Dynam. Control 5, 95–101 (2017). https://doi.org/10.1007/s40435-015-0156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0156-3

Keywords

Navigation