Skip to main content
Log in

Reconstruction of chaotic systems of a certain class

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

We use a scalar time series to find an unknown original system (OS) of ordinary differential equations in a given class. To solve this problem, we first construct a standard system (SS) of a known type having the observable and its derivatives as variables. Then we pass from the SS to the sought OS. To this end, we propose a new method that we call a method of perspective coefficients. It involves an analysis of relations between the coefficients of the OS, the SS, and the numerical values of the SS coefficients obtained for the studied time series. The method permits to obtain a number of OS’s that yield the given scalar time series. Here we recover exactly the observable variable rather than obtain its approximation. In some cases, using the proposed approach one can obtain a unique candidate system even if no additional information is available. The obtained candidate system can be considered as the thought OS. An exact reconstruction of the Rössler system structure was obtained in the paper in such a way. Moreover, in all considered cases, we could not only determine the structure of the OS but also find numerical values for some of the coefficients in the OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crutchfield JP, McNamara BS (1987) Equations of motion from a data series. Complex Syst 1:417–452

    MathSciNet  MATH  Google Scholar 

  2. Aguirre LA, Furtado EC (2007) Building dynamical models from data and prior knowledge: the case of the first period-doubling bifurcation. Phys Rev E 76:046219

    Article  Google Scholar 

  3. Judd K, Small M (2000) Towards long-term prediction. Phys D 136:31–44

    Article  MathSciNet  MATH  Google Scholar 

  4. Billings SA, Chen S, Korenberg MJ (1989) Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int J Control 49(6):2157–2189

    Article  MathSciNet  MATH  Google Scholar 

  5. Corrêa M, Aguirre L, Mendes E (2000) Modeling chaotic dynamics with discrete nonlinear rational models. Int J Bifurc Chaos 10(5):1019–1032

    Article  Google Scholar 

  6. Leontaritis I, Billings SA (1985) Input-output parametric models for nonlinear systems. Part 1: deterministic non-linear systems. Int J Control 41:303–328

    Article  MathSciNet  MATH  Google Scholar 

  7. Leontaritis I, Billings SA (1985) Input-output parametric models for nonlinear systems. Part 2: stochastic non-linear systems. Int J Control 41:329–344

    Article  MathSciNet  MATH  Google Scholar 

  8. Tronci S, Giona M, Baratti R (2003) Reconstruction of chaotic time series by neural models: a case study. Neurocomputing 55:581–591

    Article  Google Scholar 

  9. Cao L, Hong Y, Fang H, He G (1995) Predicting chaotic time series with wavelet networks. Phys D 85:225–238

    Article  MATH  Google Scholar 

  10. Cowper M, Mulgrew B, Unsworth C (2002) Nonlinear prediction of chaotic signals using a normalised radial basis function network. Signal Process 82:775–789

    Article  MATH  Google Scholar 

  11. Gu H, Wang H (2007) Fuzzy prediction of chaotic time series based on singular value decomposition. Appl Math Comput 185:1171–1185

    Article  MATH  Google Scholar 

  12. Aguirre LA, Letellier C (2009) Modeling nonlinear dynamics and chaos: a review. Math Probl Eng 2009:238960

    Article  MathSciNet  Google Scholar 

  13. Hong X, Mitchell RJ, Chen S, Harris CJ, Li K, Irwin GW (2008) Model selection approaches for non-linear system identification: a review. Int J Syst Sci 39(10):925–946

    Article  MathSciNet  MATH  Google Scholar 

  14. Judd K, Mees A (1995) On selecting models for nonlinear time series. Phys D 82(4):426–444

    Article  MathSciNet  MATH  Google Scholar 

  15. Mendes EMAM, Billings SA (2001) An alternative solution to the model structure selection problem. IEEE Trans Syst Man Cybern Part A 31(6):597–608

    Article  Google Scholar 

  16. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  17. Vallis GK (1988) Conceptual models of El Niño and the Southern Oscillation. J Geophys Res 93(C11):13979–13991

    Article  Google Scholar 

  18. McMillen T (1999) The shape and dynamics of the Rikitake attractor. Nonlinear J 1:1–10

    Google Scholar 

  19. Epstein IR, Showalter K (1996) Nonlinear chemical dynamics: oscillations, patterns, and chaos. J Phys Chem 100(31):13132–13147

    Article  Google Scholar 

  20. Gurel D, Gurel O (1983) Oscillations in chemical reactions. Springer, Berlin

    Google Scholar 

  21. Maquet J, Letellier C, Aguirre LA (2004) Scalar modeling and analysis of a 3D biochemical reaction model. J Theor Biol 228(3):421–430

    Article  MathSciNet  Google Scholar 

  22. Maquet J, Letellier C, Aguirre LA (2007) Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems. J Math Biol 55(1):21–39

    Article  MathSciNet  MATH  Google Scholar 

  23. Matsona LE (2007) The Malkus–Lorenz water wheel revisited. Am J Phys 75:1114

    Article  Google Scholar 

  24. Tongen A, Thelwell RJ, Becerra-Alonso D (2013) Reinventing the wheel: the chaotic sandwheel. Am J Phys 81:127

    Article  Google Scholar 

  25. Franca LFP, Weber HI (2004) Experimental and numerical study of a new resonance hammer drilling model with drift. Chaos Solitons Fractals 21:789–801

    Article  MATH  Google Scholar 

  26. Holms PJ (1979) A nonlinear oscillator with a strange attractor. Philos Trans R Soc Lond A 292:419–448

    Article  Google Scholar 

  27. Ueda Y (1979) Randomly transitional phenomena in the system governed by Duffing’s equation. J Stat Phys 20(2):181–196

    Article  MathSciNet  Google Scholar 

  28. Yamapi R, Bowong S (2006) Dynamics and chaos control of the self-sustained electromechanical device with and without discontinuity. Commun Nonlinear Sci Numer Simul 11:355–375

    Article  MathSciNet  MATH  Google Scholar 

  29. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L (eds) Dynamical system and turbulence, vol 898., Lecture notes in mathematics. Springer, New York, pp 366–381

  30. Gouesbet G (1991) Reconstruction of standard and inverse vector fields equivalent to the Rössler system. Phys Rev A 44:6264–6280

    Article  MathSciNet  Google Scholar 

  31. Baake E, Baake M, Bock HG, Briggs KM (1992) Fitting ordinary differential equations to chaotic data. Phys Rev A 45:5524–5529

    Article  Google Scholar 

  32. Gouesbet G (1991) Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series. Phys Rev A 43:5321–5331

    Article  MathSciNet  Google Scholar 

  33. Bezruchko BP, Dikanev TV, Smirnov DA (2001) Role of transient processes for reconstruction of model equations from time series. Phys Rev E 64:036210

    Article  Google Scholar 

  34. Bezruchko BP, Smirnov DA, Sysoev IV (2006) Identification of chaotic systems with hidden variables (modified Bock’s algorithm). Chaos Solitons Fractals 29:82–90

  35. Lainscsek C, Letellier C, Gorodnitsky I (2003) Global modeling of the Rössler system from the \(z\)-variable. Phys Lett A 314:409–427

  36. Lainscsek C, Letellier C, Schürrer F (2001) Ansatz library for global modeling with a structure selection. Phys Rev E 64:016206

    Article  Google Scholar 

  37. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  38. Gouesbet G (1992) Reconstruction of vector fields: the case of Lorenz system. Phys Rev A 46:1784–1796

    Article  MathSciNet  Google Scholar 

  39. Gorodetskyi V, Osadchuk M (2013) Analytic reconstruction of some dynamical systems. Phys Lett A 377:703–713

    Article  MathSciNet  Google Scholar 

  40. Ljung L (1987) System identification: theory for the user. PTR Prentice Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  41. Lainscsek C (2011) Nonuniqueness of global modeling and time scaling. Phys Rev E 84:046205

    Article  Google Scholar 

  42. Jafari S, Sprott J (2013) Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57:79–84

    Article  MathSciNet  Google Scholar 

  43. Jafari S, Sprott J, Golpayegani SMRH (2013) Elementary quadratic chaotic flows with no equilibria. Phys Lett A 377:699–702

    Article  MathSciNet  Google Scholar 

  44. Sprott J (1994) Some simple chaotic flows. Phys Rev E 50(2):R647–R650

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gorodetskyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodetskyi, V., Osadchuk, M. Reconstruction of chaotic systems of a certain class. Int. J. Dynam. Control 3, 341–353 (2015). https://doi.org/10.1007/s40435-014-0100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-014-0100-y

Keywords

Navigation