Skip to main content
Log in

Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Nowadays, microfluidic technologies have widely been employed in developing point-of-care diagnostics to address global health issues because of their potential advantages of low sample and reagent consumption, high throughput and sensitivity, large surface-to-volume ratio, and other benefits related to miniaturization. However, the fabrication of microfluidic channels is commonly costly and requires laboratory-intensive cleaning, photolithography, and etching or baking steps in cleanroom environments, making it difficult to modify. Besides, proper channel enclosure without deforming small features or without clogging of the channel during the bonding process is challenging. The present article aims to demonstrate a cheap, reliable, and rapid method for the fabrication of microfluidic channels using double-sided tapes, enabling not only highly uniform cross-sectional dimensions along the microfluidic channels but also proper adhesion in hybrid systems, composed of different layers. In other words, this technique provides a single-step integration of electrochemical sensors in a microfluidic chip, which could be useful for rapid and low-cost fabrication of microfluidic-based electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hua J, Wang SQ, Wanga L, Lib F, Pingguan-Murphye B, Lub TJ, Xua F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  Google Scholar 

  2. Hawkins KR, Weigl BH (2010) Microfluidic diagnostics for low-resource settings. In: Becker H, Wang W (eds) Microfluidics, BioMEMS, and medical microsystems Viii. Proceedings of the SPIE, vol 7593, pp 75930L1–L15

  3. Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12:209–218

    Article  Google Scholar 

  4. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  5. Gu P, Liu K, Chen H, Nishida T, Fan ZH (2011) Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Anal Chem 83:446–452

    Article  Google Scholar 

  6. Mitra SK, Chakraborty S (2012) Microfluidics and nanofluidics handbook. CRC Press/Taylor and Francis, Novato

    Google Scholar 

  7. Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RL, Rauchfuss PA et al (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6(5):667–674

    Article  Google Scholar 

  8. Lin R, Burns MA (2005) Surface-modified polyolefin microfluidic devices for liquid handling. J Micromech Microeng 15:2156–2162

    Article  Google Scholar 

  9. Zhang W, Lin S, Wang C, Hu J, Li C, Zhuang Z, Zhou Y et al (2009) PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9:3088–3094

    Article  Google Scholar 

  10. Sunkara V, Park DK, Hwang H, Chantiwas R, Soper SA, Cho YK (2011) Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 11:962–965

    Article  Google Scholar 

  11. Mehta G, Lee J, Cha W, Tung YC, Linderman JJ, Takayama S (2009) Hard top soft bottom microfluidic devices for cell culture and chemical analysis. Anal Chem 81:3714–3722

    Article  Google Scholar 

  12. Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P et al (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2)

  13. Lee SW, Lee SS (2008) Shrinkage ratio of PDMS and its alignment method for the wafer level process. Microsyst Technol 14(2):205–208

    Article  Google Scholar 

  14. Moral-Vico J, Barallat J, Abad L, Olivé-Monllau R, Xavier Muñoz-Pascual F, Galán Ortega A, del Campo FJ, Baldrich E (2015) Dual chronoamperometric detection of enzymatic biomarkers using magnetic beads and a low-cost flow cell. Biosens Bioelectron 69:328–336

    Article  Google Scholar 

  15. Nath P, Fung D, Kunde YA, Zeytun A, Brancha B, Goddarda G (2010) Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10:2286–2291

    Article  Google Scholar 

  16. Hwang JS, Kim SY, Kim YS, Song HJ, Park CY, Kim JD (2015) Implementation of PCB-based PCR chip using double-sided tape. IJCA 8(2):117–124

    Article  Google Scholar 

  17. Khashayar P, Amoabediny Gh, Larijani B, Hosseini M, Verplancke R, Schaubroek D, De Keersmaecker M, Adriaens A, Vanfleteren J (2016) Characterization of gold nanoparticle layer deposited on gold electrode by various techniques for improved sensing abilities. Biointerface Res Appl Chem 6(4):1380–1390

    Google Scholar 

  18. Mair DA, Geiger E, Pisano AP, Frechet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354

    Article  Google Scholar 

  19. Bartholomeusz DA, Boutté RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14(6):1364–1374

  20. Kim J, Shin Y, Song S, Lee J, Kim J (2014) Rapid prototyping of multifunctional microfluidic cartridges for electrochemical biosensing platforms. Sens Actuators B Chem 202:60–66

    Article  Google Scholar 

  21. Luo LW, Teo CY, Ong WL, Tang KC, Cheow LF, Yobas L (2007) Rapid prototyping of microfluidic systems using a laser-patterned tape. J Micromech Microeng 17:N107–N111

    Article  Google Scholar 

  22. Patko D, Martonfalvi Z, Kovacs B, Vonderviszt F, Kellermayer M, Horvath R (2014) Microfluidic channels laser-cut in thin double-sided tapes: cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sens Actuators B Chem 196:352–356

    Article  Google Scholar 

  23. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  Google Scholar 

  24. Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16

    Article  Google Scholar 

  25. Kim J, Surapaneni R, Gale BK (2009) Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab Chip 9:1290–1293

    Article  Google Scholar 

  26. Mair DA, Rolandi M, Snauko M, Noroski R, Svec F, Fréchet JMJ (2007) Room-temperature bonding for plastic high-pressure microfluidic chips. Anal Chem 79(13):5097–5102

    Article  Google Scholar 

  27. Bruus H (2011) Basic flow solutions. In: Bruus H (ed) Theoretical microfluidics, 4th edn. Oxford University Press, New York

    Google Scholar 

  28. Hawkins KR, Steedman MR, Baldwin RR, Fu E, Ghosal S, Yager P (2007) A method for characterizing adsorption of flowing solutes to microfluidic device surfaces. Lab Chip 7(2):281–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Vanfleteren .

Additional information

Technical Editor: Estevam Las Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khashayar , P., Amoabediny, G., Larijani, B. et al. Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors. J Braz. Soc. Mech. Sci. Eng. 39, 1469–1477 (2017). https://doi.org/10.1007/s40430-016-0684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0684-6

Keywords

Navigation