Skip to main content
Log in

Numeric simulation of wet-steam two-phase condensing flow in a steam turbine cascade

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Research on the wet-steam condensing flow problem is important for improving steam turbine efficiency. This paper derived a total variation diminishing (TVD) discrete method for a two-dimensional curvilinear coordinate system, which discretizes a control equation via a difference scheme that can accurately describe the transonic flow of compressible gas and capture abrupt parameter changes. This method can be applied to improve the shock wave capture accuracy in a cascade passage. A Cascade in White test is chosen as the study object to obtain test data to verify the accuracy of the proposed model. The calculation results indicate that the condensation process has a significant impact on the local flow parameters and that the distribution gradient of the parameters for the liquid phase is relatively large in the condensation position. The degree of subcooling of wet steam is the primary factor that influences the parameter distribution for the liquid phase in the main flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a 0 :

Surface area of an individual gas molecule, m2

E :

Energy density, kJ m−3

g :

Total number of molecular aggregations

h t :

Steam enthalpy, kJ kg−1

h fg :

Latent heat of vaporization, kJ kg-1

J :

Nucleation rate per unit volume, (m3 s)−1

K n :

Knudsen number

m :

Mass of a single molecule, kg

\( \dot{m} \) :

Mass of a micro control element

Ma:

Mach number

N :

Number of water droplets per unit mass

P rg :

Prandtl number

p :

Steam pressure, Pa

q c :

Condensation coefficient

R :

Ideal gas constant, J (mol K)−1

r :

Droplet radius, m

S :

Degree of supersaturation, K

T :

Temperature, K

T :

Degree of super-cooling, K

u :

Axial velocity, m s−1

v :

Radial velocity, m s−1

y :

Wetness

α1 :

Outlet flow angles

γ:

Heat capacity ratio of steam

σ :

Droplet surface tension, N·m−1

θ:

Non-dimensional surface tension

λg :

Thermal conductivity of steam, W (m K)−1

ν:

Semiempirical correction factor of water droplet growth rate

ρ:

Density, kg m−3

τ:

Microcontrol element

C :

Critical radius of a water droplet

G :

Gas-phase parameters

L :

Liquid-phase parameters

S :

Saturation state

Het:

Heterogeneous condensing flow

References

  1. Moore MJ, Sieverding CH (1976) Two-phase steam flow in turbines and separators. Hemisphere Publishing Corporation, London

    Google Scholar 

  2. Baumann K (1921) Some recent developments in large steam turbine practice. J Inst Electr Eng 59(302):565–623. doi:10.1049/jiee-1.1921.0040

    Google Scholar 

  3. Guha A (1998) Computation, analysis and theory of two-phase flows. Aeronaut J 102(1012):71–82

    Google Scholar 

  4. Bakhtar F, Ebrahimi M, Webb RA (1995) On the performance of a cascade of turbine rotor tip section blading in nucleating steam: part 1: surface pressure distributions. P I Mech Eng C-J Mec 209(2):115–124. doi:10.1243/PIME_PROC_1995_209_131_02

    Article  Google Scholar 

  5. White AJ, Young JB, Walters PT (1996) Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades. Philos T Roy Soc A. 354(1704):59–88. doi:10.1098/rsta.1996.0003

    Article  Google Scholar 

  6. Huang L, Young JB (1996) An analytical solution for the Wilson point in homogeneously nucleating flows. P Roy Soc A-Math Phy 452(1949):1459–1473. doi:10.1098/rspa.1996.0074

    Article  MATH  Google Scholar 

  7. Bakhtar F, Young JB, White AJ, Simpson DA (2005) Classical nucleation theory and its application to condensing steam flow calculations. P I Mech Eng C-J Mec 219(12):1315–1333. doi:10.1243/095440605X8379

    Article  Google Scholar 

  8. Han Z, Han X, Li H, Li P (2016) Korean J Chem Eng. doi:10.1007/s11814-016-0197-0

    Google Scholar 

  9. Dykas S, Wróblewski W (2013) Two-fluid model for prediction of wet steam transonic flow. Int J Heat Mass Tran 60:88–94. doi:10.1016/j.ijheatmasstransfer.2012.12.024

    Article  Google Scholar 

  10. Li L, Li Y, Xie X, Li J (2014) Investigation of the vapour-liquid two-phase flow in the low-pressure cylinder of a 1000 MW nuclear power steam turbine. P I Mech Eng A-J Pow 228(2):708–716. doi:10.1177/0957650913511800

    Google Scholar 

  11. Li Y, Li L, Zhang T, Li J (2013) Aerodynamic optimisation of a low-pressure multistage turbine using the response-surface method. J Mech Sci Technol 27(8):2537–2546. doi:10.1007/s12206-013-0638-1

    Article  Google Scholar 

  12. Gerber AG, Kermani MJ (2004) A pressure based eulerian/eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int J Heat Mass Tran 47(10):2217–2231. doi:10.1016/j.ijheatmasstransfer.2003.11.017

    Article  MATH  Google Scholar 

  13. Gerber AG, Mousavi A (2007) Representing polydispersed droplet behavior in nucleating steam flow. J Fluid Eng-T ASME 129(11):1404–1414. doi:10.1115/1.2786536

    Article  Google Scholar 

  14. Zhang DY, Jiang HD, Liu JJ (2001) Numerical calculation of one dimensional steam nucleating flow by considering some influences. J Eng Thermophys (in Chinese) 22(s1):25–28

    Google Scholar 

  15. Lin ZR, Yuan X (2006) A Numerical method for spontaneous condensation flow and its application on Laval nozzle. J Eng Thermophys (in Chinese) 27(1):42–44

    Google Scholar 

  16. D Bolm, H Kerpicci, J Ren, N Surken (2001) Homogeneous and heterogeneous nucleation in a nozzle guide vane of a LP-Steam turbine, 4th European Conference on Turbomachinery, Fluid dynamics and Thermodynamics, Firenze, Italy

  17. Dykas S, Wróblewski W (2011) Single-and two-fluid models for steam condensing flow modeling. Int J Multiph Flow 37(9):1245–1253. doi:10.1016/j.ijmultiphaseflow.2011.05.008

    Article  Google Scholar 

  18. Young JB (1992) Two-dimensional non-equilibrium wet-steam calculations for nozzles and turbine cascades. J Turbomach 114(3):569–579. doi:10.1115/1.2929181

    Article  Google Scholar 

  19. Kantrowitz A (1951) Nucleation in very rapid vapor expansions. J Chem Phys 19(9):1097–1100. doi:10.1063/1.1748482

    Article  Google Scholar 

  20. Patel Y, Patel G, Turunen-Saaresti T (2013) The effect of turbulence and real gas models on the two-phase spontaneously condensing flows in nozzle. ASME Turbo Expo 2013 Turbine Tech Conf Expos San Antonio Am. doi:10.1115/GT2013-94778

    Google Scholar 

  21. An LS, Wang Z, Han ZH (2009) Numerical simulation of two-phase wet-steam flow in turbine cascade. P CSEE 29(11):70–74. doi:10.13334/j.0258-8013.pcsee.2009.11.013

    Google Scholar 

  22. Han ZH, Chen BW, Liu G (2011) Droplets growth model in wet steam two-phase condensation flow. P CSEE 31(29):79–84. doi:10.13334/j.0258-8013.pcsee.2011.29.001

    Google Scholar 

  23. Bakhtar F, Mahpeykar MR (1997) On the performance of a cascade of turbine rotor tip section blading in nucleating steam part 3: theoretical treatment. P I Mech Eng C-J Mec 211(3):195–210. doi:10.1243/0954406971521773

    Article  Google Scholar 

  24. Bakhtar F, Mashmoushy H, Buchley JR (1997) On the performance of a cascade of turbine rotor tip section blading in wet steam. Part 1: generation of wet steam of prescribed droplet sizes. P I Mech Eng C-J Mec 211(7):519–529. doi:10.1243/0954406971521908

    Article  Google Scholar 

  25. Bakhtar F, Mashmoushy H, Jadayel OC (1997) On the performance of a cascade of turbine rotor tip section blading in wet steam. Part 2: surface pressure distributions. P I Mech Eng C-J Mec 211(7):531–540. doi:10.1243/0954406971521917

    Article  Google Scholar 

  26. Bakhtar F, Mashmoushy H, Jadayel OC (1995) On the performance of a cascade of turbine rotor tip section blading in wet steam. Part 2: wake traverses. P I Mech Eng C-J Mec 209(3):169–177. doi:10.1243/PIME_PROC_1995_209_140_02

    Article  Google Scholar 

  27. White AJ, Young JB (1993) Time marching method for the prediction of 2-dimensional, unsteady flows of condensing steam. J Propul Power 9(4):579–587. doi:10.2514/3.23661

    Article  Google Scholar 

  28. White AJ (2003) A comparison of modeling methods for polydispersed wet-steam flow. Int J Numer Meth Eng 57:819–834. doi:10.1002/nme.705

    Article  MATH  Google Scholar 

  29. White AJ, Hounslow MJ (2000) Modelling droplet size distributions in polydispersed wet-steam flows. Int J Heat Mass Tran 43(11):1873–1884. doi:10.1016/S0017-9310(99)00273-2

    Article  MATH  Google Scholar 

  30. White AJ (2000) Numerical investigation of condensing steam flow in boundary layers. Int J Heat Fluid Fl 21(6):727–734. doi:10.1016/S0142-727X(00)00030-8

    Article  Google Scholar 

  31. Han ZH, Han X, Li P (2015) Effect of thermodynamic properties on wet steam non-equilibrium condensing flow. CIESC J (in Chinese) 66(11):4316–4323. doi:10.11949/j.issn.0438-1157.20150727

    MathSciNet  Google Scholar 

  32. Zhang DY, Liu JJ, Jiang HD (2003) The approach and application of fast and accurate numerical simulation on 3D wet-steam flow. J Eng Thermophy (in Chinese) 24(2):262–264

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the support by the National Natural Science Foundation of China (Grant No. 51306059) and the support by the Fundamental Research Funds for the Central Universities of China (Grant No. 2016XS106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Han.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Technical Editor: Jose A. dos Reis Parise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Han, X. & Wang, Z. Numeric simulation of wet-steam two-phase condensing flow in a steam turbine cascade. J Braz. Soc. Mech. Sci. Eng. 39, 1189–1199 (2017). https://doi.org/10.1007/s40430-016-0655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0655-y

Keywords

Navigation