Skip to main content
Log in

Numerical analysis of lug effects on tractive performance of off-road wheel by DEM

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the lug effects of off-road wheel in terms of lugs’ height, type, intersection and central angle. To improve the tractive performance of transport vehicles and equipments operating on dry sands nearshore, this paper numerically presents the wheel–sand interaction by the discrete element method (DEM), which is better dynamically accurate than FEM in the study of incompact terrain-like sands. According to the physical properties presented by the triaxial test, the appropriate parameters are selected to establish and verify the simulation model of the sand sample. On that basis, numerical traction tests are orthogonally carried out to analyze the different lug effects on tractive performance. It is concluded from the analysis that the intersection of lugs has no effect on tractive performance. Lugged wheel shows the best tractive performance, while the central angle of lugs reaches 24°. Both the height and type of lugs can improve the drawbar pull; the former may increase the tractive efficiency under good road conditions with low slip, while the latter is capable of influencing the efficiency under bad road conditions with high slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FEM:

Finite element method

DEM:

Discrete element method

F DP :

Drawbar pull

F R :

Resistance from the soil

F H :

Adhesive force from the soil

M :

Moment of torque applied on the tested wheel

TE:

Tractive efficiency

References

  1. Li H, Li J, Huang ZQ (2010) Analysis of soil strength of south China sand beach based on the vehicle mobility. Agric Equip Vehicle Eng 8:26–28. doi:10.3969/j.issn.1673-3142.2010.08.008

    Google Scholar 

  2. Ding L, Gao HB, Deng ZQ, Liu RQ, Gao P (2009) Theoretical analysis and experimental research on wheel lug effect of lunar rover. J Astronaut 30(4):1351–1358. doi:10.3873/j.issn.1000-1328.2009.04.008

    Google Scholar 

  3. Bekker MG (1960) Off-road locomotion: research and development in terramechanics. The University of Michigan Press, Ann Arbor

    Google Scholar 

  4. Janosi ZJ, Eilers JA (1968) Analysis of the basic curve of obstacle negotiation. J Terramech 5(3):29–42. doi:10.1016/0022-4898(68)90079-7

    Article  Google Scholar 

  5. Wong JY, Reece AR (1967) Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: part II. Performance of towed rigid wheels. J Terramech 4(2):7–25. doi:10.1016/0022-4898(67)90035-3

    Article  Google Scholar 

  6. Wong JY (1988) Terramechanics and off-road vehicle engineering: terrain behaviour, off-road vehicle performance. Butterworth Heinemann Press, Oxford

    Google Scholar 

  7. Bekker MG (1969) Introduction to terrain-vehicle systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  8. Tian XF, Jiang LH, Nie XH (2013) Research progress on soil bin test in vehicle terramechanics. Automobile Tech 2:1–4. doi:10.3969/j.issn.1005-2550.2013.02.001

    Google Scholar 

  9. Perumpral JV, Lilzedahl JB, Perloff WH (1971) A numerical method for predicting the stress distribution and soil deformation under a tractor wheel. J Terramech 8(1):9–22. doi:10.1016/0022-4898(71)90072-3

    Article  Google Scholar 

  10. Fervers CW (2004) Improved FEM simulation model for tire–soil interaction. J Terramech 41(2–3):87–100. doi:10.1016/j.jterra.2004.02.012

    Article  Google Scholar 

  11. Hambleton JP, Drescher A (2008) Modeling wheel-induced rutting in soils: indentation. J Terramech 45(6):201–211. doi:10.1016/j.jterra.2008.11.001

    Article  Google Scholar 

  12. Xia K (2011) Finite element modeling of tire/terrain interaction: application to predicting soil compaction and tire mobility. J Terramech 48(2):113–123. doi:10.1016/j.jterra.2010.05.001

    Article  Google Scholar 

  13. Ingobert CS (1995) Interaction of vehicle and terrain results from 10 years research at IKK. J Terramech 32(1):3–26. doi:10.1016/0022-4898(95)00005-L

    Article  Google Scholar 

  14. Koichiro F, Masami U, Koichi H (2006) Mathematical models for soil displacement under a rigid wheel. J Terramech 43(3):287–301. doi:10.1016/j.jterra.2005.05.005

    Article  Google Scholar 

  15. Wang BX, Ren YX, Liu Y, Zhao Y (2014) Present status and developing trend of tire-soil interaction research. Agric Equip Vehicle Eng 52(12):14–22. doi:10.3969/j.issn.1673-3142.2014.12.004

    Google Scholar 

  16. Momozu M, Oida A, Yamazaki M, Koolen AJ (2002) Simulation of a soil loosening process by means of the modified distinct element method. J Terramech 39(4):207–220. doi:10.1016/S0022-4898(03)00011-9

    Article  Google Scholar 

  17. Cundall PA, Strack ODL (1971) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  18. Oida A, Ohkubo S (2000) Effect of tire lug cross section on tire performance simulated by distinct element method (Application of DEM to simulate interaction between soil and tire lug). Proceedings of the 13th Conference of International Society for Terrain-Vehicle System: 345–352

  19. Taheri SH, Sandu C, Taheri S, Pinto E, Gorsich D (2015) A technical survey on terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles. J Terramech 57:1–22. doi:10.1016/j.jterra.2014.08.003

    Article  Google Scholar 

  20. Li JQ, Huang H, Wang Y, Tian LM, Ren LQ (2015) Development on research of soft-terrain machine systems. Trans Chin Soc Agric Mach 46(5):306–320. doi:10.6041/j.issn.1000-1298.2015.05.044

    Google Scholar 

  21. Nakashima H, Fujii H, Oida A, Momozu M, Kawase Y, Kanamori H, Aoki S, Yokoyama T (2007) Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM. J Terramech 44(2):153–162. doi:10.1016/j.jterra.2005.11.001

    Article  Google Scholar 

  22. Nakashima H, Fujii H, Oida A, Momozu M, Kanamori H, Aoki S, Yokoyama T, Shimizu H, Miyasaka J, Ohdoi K (2010) Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain. J Terramech 47(5):307–321. doi:10.1016/j.jterra.2010.04.001

    Article  Google Scholar 

  23. Johnson JB, Kulchitsky AV, Duvoy P, Iagnemma K, Senatore C, Arvidson RE, Moore JM (2015) Discrete element method simulations of mars exploration rover wheel performance. J Terramech 62:31–40. doi:10.1016/j.jterra.2015.02.004

    Article  Google Scholar 

  24. Knuth MA, Johnson JB, Hopkins MA, Sullivan RJ, Moore JM (2012) Discrete element modeling of a mars exploration rover wheel in granular material. J Terramech 49(1):27–36. doi:10.1016/j.jterra.2011.09.003

    Article  Google Scholar 

  25. Yang MM (2015) Bionic research in mars rover wheel based on plantar morphological characters of ostrich foot. Dissertation, Jilin University

  26. Zhou GF, Zhang SH, Xu SC, Zhang R, Li JQ (2011) Multiscale simulation in mesoscopic dynamic behavior of lunar soil simulant subjected to rigid lugged wheel. Appl Mech Mater 80–81:575–579. doi:10.4028/www.scientific.net/AMM.80-81.575

    Article  Google Scholar 

  27. Cui Y, Li W, Wang J, Sun P (2010) Numerical analysis on traction performance of trapezia lugged wheel by distinct element method. J B Univ Aeronaut and Astronaut 36(3):253–256. doi:10.13700/j.bh.1001-5965.2010.03.003

    Google Scholar 

  28. Li M, Gao F, Sun P, Cui Y (2013) Prediction of lunar rover’s moon tractive performance based on similitude theory. J B Univ Aeronaut Astronaut 39(2):230–234. doi:10.13700/j.bh.1001-5965.2013.02.020

    Google Scholar 

  29. Shi RY (2014) Research on influence of low gravity to mechanical properties of the lunar soil simulant and interaction between lunar soil simulant and lunar rover. Dissertation, Jilin University

  30. Zhang R, Luo G, Xue SL, Yang MM, Liu F, Zhang SH, Pan RD, Li JQ (2015) Bionic design of configuration of rigid wheel moving on sand and numerical analysis on its traction performance. Trans Chin Soc Agric Eng 31(3):123–128. doi:10.3969/j.issn.1002-6819.2015.03.017

    Google Scholar 

  31. Liu F (2013) Research on dynamic simulation system of the interaction between irregular structural wheel and loose lunar soil simulant. Dissertation, Jilin University

  32. Zhao CL, Zang MY (2014) Analysis of rigid tire traction performance on a sandy soil by 3D finite element–discrete element method. J Terramech 55:29–37. doi:10.1016/j.jterra.2014.05.005

    Article  Google Scholar 

  33. Wang YJ (2012) The Analysis of the interaction between wheel and soft ground based on DEM. Dissertation, Jilin University

  34. Li JQ, Zou M, Jia Y, Ren LQ, Li YW (2008) Research on the interaction between lunar rover wheel and lunar soil by simulation. Trans Chin Soc Agric Mach 39(4):1–23

    Google Scholar 

  35. Zou M, Li JQ, Liu GM, Zhang JH, Li YW (2011) Experimental study of terra-mechanics characters of simulant lunar soil. Rock Soil Mech 32(4):1057–1061. doi:10.16285/j.rsm.2011.04.001

    Google Scholar 

  36. Li GX (2004) Advanced Soil Mechanics. Tsinghua University Press, Beijing

    Google Scholar 

Download references

Acknowledgments

This paper is sponsored by the Science Foundation of the National University of Defense Technology (No. JC14-09-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Gao.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Gao, J., Jiang, L. et al. Numerical analysis of lug effects on tractive performance of off-road wheel by DEM. J Braz. Soc. Mech. Sci. Eng. 39, 1977–1987 (2017). https://doi.org/10.1007/s40430-016-0633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0633-4

Keywords

Navigation